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Motivation

Super-resolution. Estimate a signal from coarse measurements

� Recover pointwise sources or more complex structures

� Ubiquitous problem in imaging and data science, e.g. fluorescence microscopy, X-ray

crystallography, mixture model estimation.

0 images from the cell image library (http://cellimagelibrary.org/)
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Data model

� Borel measures

d ∈ N \ {0}, T def.
= R/Z Torus,

µ ∈M(Td )

∫

Singular measures µ

� Trigonometric moments

k ∈ Zd ,

µ̂(k)
def.
=

∫
Td

e−2ıπ〈k, x〉dµ(x)

Fourier partial sum Snµ (n = 20)

How ”well” can we recover µ from {µ̂(k)}, k ∈ {−n, . . . , n}d?
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Previous works

� For discrete measures,

- Prony’s method1; ESPRIT2 , MUSIC3 , matrix pencils4 .

- Variational methods, e.g. TV-minimization5 .

� For general measures,

- FRI approaches6 .

- Christoffel functions7 .

Prony Variational Approximation

� Our work shares similarities with [Mhaskar 2019], use another metric on measures

1R. de Prony, 1795, Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques ...
2Roy and Kailath, 1989, ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques
3Schmidt, 1986, Multiple Emitter Location and Signal Parameter Estimation
4Hua and Sarkar, 1989, Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response
5Candès and Fernandez-Granda, 2014, Towards a Mathematical Theory of Super-Resolution
6Pan, Blu, and Dragotti, 2014, Sampling Curves With Finite Rate of Innovation
7Pauwels, Putinar, and Lasserre, 2020, Data Analysis From Empirical Moments and the Christoffel Function
8Mhaskar, 2019, Super-Resolution Meets Machine Learning: Approximation of Measures
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Overview

1. Preliminaries

2. Polynomial Approximations in Wasserstein-1

- Lower bound for best approximation in the worst case

- Upper bound for Fn ∗ µ
- Upper bound for Jn ∗ µ
- Sharpness

3. Polynomial Interpolation

- Pointwise convergence

- The discrete case

4. Numerical illustrations

5. Conclusion
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Preliminaries



Wasserstein-1 distance

� The quality of an approximation depends on the metric over M(Td )1

� Examples include f-divergences, MMD, and Wasserstein distances

� Wasserstein distances metrize the weak* topology (on compact sets), i.e.

µn ⇀ µ ⇐⇒ Wp(µn, µ)→ 0

...

� Wasserstein-1 further admits the practical (dual) formulation

W1(µ, ν) = sup
f∈C (Td ),Lip(f )61

∫
f d(µ− ν)

→ requires no positivity, only µ(Td ) = ν(Td )

→ Lip(f ) 6 1 means |f (x)− f (y)| 6 mink∈Zd ||x − y + k||1, ∀x , y

1Mhaskar, 2019, Super-Resolution Meets Machine Learning: Approximation of Measures
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Moment Matrix

Definition (Moment matrix). Given {µ̂(k)}, k ∈ {−n, . . . , n}d , we define the

moment matrix

Tn
def.
=
[
µ̂(k − l)

]
k,l∈{0,...,n}d

.

� Singular value decomposition

Tn =
r∑

j=1

σju
(n)
j v

(n)∗
j

� When µ =
∑r

j=1 λjδxj , Tn admits the Vandermonde decomposition

Tn = AΛA∗

where A =
[
e−2iπ〈k, xj 〉

]
k∈{0,...,n}d , j∈J1,rK

and Λ = Diag(λ).
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Polynomial Approximations



Best Polynomial Approximation

� Assume µ is of finite total variation, ||µ||TV = 1

� We make no further assumptions

Theorem (Worst-case bound). For every d , n ∈ N, for every µ ∈ M(Td ), there

exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it

holds that

sup
µ∈M

min
deg(p)6n

W1(p, µ) >
1

4(n + 1)
.

Idea of the proof

sup
µ

min
p
W1(p, µ) > min

p
W1(p, δ0)

= min
p

sup
Lip(f )61

||f − p̌ ∗ f ||∞ (p̌(x) = p(−x))

> sup
Lip(f )61

min
p
||f − p||∞

→ worst-case error for best polynomial approximation of Lipschitz functions

→ generalize a univariate argument of [Fisher 1977]
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Fejér approximation

� Consider the Fejér kernel Fn

Fn(x)
def.
=

1

(n + 1)d

d∏
i=1

sin2 ((n + 1)πxi )

sin2 (πxi )

� Consider the polynomial pn
def.
= Fn ∗ µ

- alternatively

pn(x) =
1

(n + 1)d
en(x)∗Tnen(x) =

1

(n + 1)d

∑
σju

(n)
j (x)v

(n)
j (x)∗

- computed from µ̂(k) using fast Fourier transforms

-0.1 0 0.1

2

4

6

8

10

12

14

* =

Theorem (Weak* convergence). We have that pn ⇀ µ. More precisely,

W1(pn, µ) 6
d

π2

log(n + 1) + 3

n
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Jackson approximation

� Consider the Jackson kernel Jn

J2m(x)
def.
= α(m)

d∏
i=1

sin4((m + 1)πxi )

sin4(πxi )

� Consider the polynomial qn(x)
def.
= Jn ∗ µ

- also computed with FFT

-0.1 0 0.1

2

4

6

8

10

12

* =

Theorem. (Weak* convergence) We have that qn ⇀ µ. More precisely,

W1(qn, µ) 6
3

2

d

n + 2
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Sharpness

� For the worst-case bound, sharpness is revealed in the univariate case

Lemma. For µ, ν ∈M(T), we have

W1(µ, ν) =

∫
T
|B1 ∗ µ(t)− B1 ∗ ν(t)|dt, where B1(t)

def.
=
∞∑
k=1

sin 2πkt

πk
=

1

2
− t

- Periodic analog of the cumulative distribution formulation of W1 on R
- If µ is absolutely continuous, leads to unicity of the best approximation

- If µ = δ0, then W1(p∗, δ0) = 1
4

(n + 1)−1, matching our lower bound

� For the Fejér approximation

Theorem (Saturation). For every measure µ ∈ M(Td ) not being the Lebesgue

measure, there exists a constant c such that

W1(pn, µ) >
c

n + 1

- For instance dµ/dx = 1 + cos(2πx) := w(x) yields W1(pn,w) > (4π)−1(n + 1)−1

- However, W1(pn, δ0) > d
π2

(
log(n+2)

n+1
+ 1

n+3

)
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Polynomial Interpolation



Interpolating Polynomial

� The singular value decomposition: Tn =
∑r

j=1 σju
(n)
j v

(n)∗
j allows to define

p1,n(x) =
1

(n + 1)d

r∑
j=1

|u(n)
j (x)|2

→ unweighted counterpart of pn = Fn ∗ µ

� Let V
def.
= Suppµ

Z
be the Zariski closure of Suppµ, and V (Ker Tn) be the set of

common roots of all polynomials in Ker Tn.

Theorem. We have 0 6 p1,n 6 1. If V (Ker Tn) = V , then p1,n(x) = 1 iff x ∈ V .

µ F20 ∗ µ p1,20(µ)

→ V (Ker Tn) = V always holds for sufficiently large n if µ discrete1 or µ ∈M+
2

→ generalizes a result of [Ongie and Jacob 2016] to varieties of arbitrary dimension

11



Interpolating Polynomial

� The singular value decomposition: Tn =
∑r

j=1 σju
(n)
j v

(n)∗
j allows to define

p1,n(x) =
1

(n + 1)d

r∑
j=1

|u(n)
j (x)|2

→ unweighted counterpart of pn = Fn ∗ µ

� Let V
def.
= Suppµ

Z
be the Zariski closure of Suppµ, and V (Ker Tn) be the set of

common roots of all polynomials in Ker Tn.

Theorem. We have 0 6 p1,n 6 1. If V (Ker Tn) = V , then p1,n(x) = 1 iff x ∈ V .

µ F20 ∗ µ p1,20(µ)

→ V (Ker Tn) = V always holds for sufficiently large n if µ discrete1 or µ ∈M+
2

→ generalizes a result of [Ongie and Jacob 2016] to varieties of arbitrary dimension

1Kunis et al., 2016, A Multivariate Generalization of Prony’s Method
2Wageringel, 2022, Truncated moment problems on positive-dimensional algebraic varieties
3Ongie and Jacob, 2016, Off-the-grid recovery of piecewise constant images from few Fourier samples
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Pointwise convergence

� We assume that Suppµ
Z 6= Td

Theorem. Let y ∈ Td \ Suppµ
Z

, and let g be a polynomial of max-degree m such

that g(y) 6= 0 and g vanishes on Suppµ. Then, for all n > m,

p1,n+m(y) 6
||g ||2

L2

|g(y)|
m(4m + 2)d

n + 1
+

dm

n + m + 1

� In combination with the interpolation property, this proves pointwise convergence

to the characteristic function of the support, with rate O(n−1).
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The Discrete Case

� If µ =
∑r

j=1 λjδxj , stronger results are derived with the help of the Vandermonde

decomposition of Tn

Theorem (Pointwise convergence). Let x 6= xj for all j . If n + 1 > 4d
minj 6=l ||xj−xl ||∞

,

then

p1,n(x) 6
1

3(n + 1)2

λmax

λmin

∑ 1

||x − xj ||2∞

Theorem (Weak* convergence). We have

p1,n

||p1,n||L1

⇀
1

r

r∑
j=1

δxj
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Numerical Illustrations

� We consider three synthetic examples

- discrete, r = 15 points, λ random moments analytical

- algebraic curve, r = 3000 points, λ uniform numerical integration

- circle, r = 3000 points, λ uniform analytical

� We compute the semidiscrete optimal transport between the discretized

approximation µr and the density pn
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Conclusion

Summary.

New insights on Waaserstein-1 approximation of measures

Computationally efficient polynomial approximations

Pointwise convergence towards the characteristic function of the support

Outlook.

Extension to the noisy regime

Preprint available: arXiv.2203.10531
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Thank you for your attention!
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