Estimating Arbitrary Measures on the Torus from Moments

Paul Catala. Joint work with M. Hockmann, S. Kunis and M. Wageringel
University of Osnabrück.
Recovering Algebraic Structures in Imaging \& Signal Processing, SIAM 2022, 23.03.22

Motivation

Super-resolution. Estimate a signal from coarse measurements

- Recover pointwise sources or more complex structures

■ Ubiquitous problem in imaging and data science, e.g. fluorescence microscopy, X-ray crystallography, mixture model estimation.

[^0]
Data model

■ Borel measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ Torus,

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

Data model

- Borel measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ Torus,

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

- Trigonometric moments $k \in \mathbb{Z}^{d}$,

$$
\hat{\mu}(k) \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} \mathrm{d} \mu(x)
$$

Fourier partial sum $S_{n} \mu(n=20)$

Data model

- Borel measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ Torus,

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

- Trigonometric moments $k \in \mathbb{Z}^{d}$,

$$
\hat{\mu}(k) \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} \mathrm{d} \mu(x)
$$

Fourier partial sum $S_{n} \mu(n=20)$

How "well" can we recover μ from $\{\hat{\mu}(k)\}, k \in\{-n, \ldots, n\}^{d}$?

Previous works

■ For discrete measures,

- Prony's method ${ }^{1}$; ESPRIT ${ }^{2}$, MUSIC ${ }^{3}$, matrix pencils ${ }^{4}$.
- Variational methods, e.g. TV-minimization ${ }^{5}$.

■ For general measures,

- FRI approaches ${ }^{6}$.
- Christoffel functions ${ }^{7}$.

Prony

Variational

Approximation

■ Our work shares similarities with [Mhaskar 2019], use another metric on measures

[^1]
Overview

1. Preliminaries

2. Polynomial Approximations in Wasserstein-1

- Lower bound for best approximation in the worst case
- Upper bound for $F_{n} * \mu$
- Upper bound for $J_{n} * \mu$
- Sharpness

3. Polynomial Interpolation

- Pointwise convergence
- The discrete case

4. Numerical illustrations
5. Conclusion

Preliminaries

Wasserstein-1 distance

- The quality of an approximation depends on the metric over $\mathcal{M}\left(\mathbb{T}^{d}\right)^{1}$

■ Examples include f-divergences, MMD, and Wasserstein distances
■ Wasserstein distances metrize the weak* topology (on compact sets), i.e.

$$
\mu_{n} \rightharpoonup \mu \Longleftrightarrow \mathcal{W}_{p}\left(\mu_{n}, \mu\right) \rightarrow 0
$$

- Wasserstein-1 further admits the practical (dual) formulation

$$
\begin{aligned}
& \qquad \mathcal{W}_{1}(\mu, \nu)=\sup _{f \in \mathscr{C}\left(\mathbb{T}^{d}\right), \operatorname{Lip}(f) \leqslant 1} \int f \mathrm{~d}(\mu-\nu) \\
& \rightarrow \text { requires no positivity, only } \mu\left(\mathbb{T}^{d}\right)=\nu\left(\mathbb{T}^{d}\right) \\
& \rightarrow \operatorname{Lip}(f) \leqslant 1 \text { means }|f(x)-f(y)| \leqslant \min _{k \in \mathbb{Z}^{d}}\|x-y+k\|_{1}, \forall x, y
\end{aligned}
$$

[^2]
Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in\{-n, \ldots, n\}^{d}$, we define the moment matrix

$$
T_{n} \stackrel{\text { def. }}{=}[\hat{\mu}(k-l)]_{k, l \in\{0, \ldots, n\}^{d}} .
$$

- Singular value decomposition

$$
T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}
$$

- When $\mu=\sum_{j=1}^{r} \lambda_{j} \delta_{x_{j}}, T_{n}$ admits the Vandermonde decomposition

$$
T_{n}=A \wedge A^{*}
$$

where $A=\left[e^{-2 i \pi\left\langle k, x_{j}\right\rangle}\right]_{k \in\{0, \ldots, n\}^{d}, j \in \llbracket 1, r \rrbracket}$ and $\Lambda=\operatorname{Diag}(\lambda)$.

Polynomial Approximations

Best Polynomial Approximation

■ Assume μ is of finite total variation, $\|\mu\|_{T V}=1$

- We make no further assumptions

Best Polynomial Approximation

- Assume μ is of finite total variation, $\|\mu\|_{T V}=1$
- We make no further assumptions

Theorem (Worst-case bound). For every $d, n \in \mathbb{N}$, for every $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$, there exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it holds that

$$
\sup _{\mu \in \mathcal{M}} \min _{\operatorname{deg}(p) \leqslant n} \mathcal{W}_{1}(p, \mu) \geqslant \frac{1}{4(n+1)}
$$

Idea of the proof

$$
\begin{aligned}
\sup _{\mu} \min _{p} \mathcal{W}_{1}(p, \mu) & \geqslant \min _{p} \mathcal{W}_{1}\left(p, \delta_{0}\right) \\
& =\min _{p} \sup _{\operatorname{Lip}(f) \leqslant 1}\|f-\check{p} * f\|_{\infty} \quad(\check{p}(x)=p(-x)) \\
& \geqslant \sup _{\operatorname{Lip}(f) \leqslant 1} \min _{p}\|f-p\|_{\infty}
\end{aligned}
$$

\rightarrow worst-case error for best polynomial approximation of Lipschitz functions
\rightarrow generalize a univariate argument of [Fisher 1977] to the multivariate case

[^3]
Fejér approximation

- Consider the Fejér kernel F_{n}

$$
F_{n}(x) \stackrel{\text { def. }}{=} \frac{1}{(n+1)^{d}} \prod_{i=1}^{d} \frac{\sin ^{2}\left((n+1) \pi x_{i}\right)}{\sin ^{2}\left(\pi x_{i}\right)}
$$

■ Consider the polynomial $p_{n} \stackrel{\text { def. }}{=} F_{n} * \mu$

- alternatively

$$
p_{n}(x)=\frac{1}{(n+1)^{d}} e_{n}(x)^{*} T_{n} e_{n}(x)=\frac{1}{(n+1)^{d}} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}
$$

- computed from $\hat{\mu}(k)$ using fast Fourier transforms

Fejér approximation

- Consider the Fejér kernel F_{n}

$$
F_{n}(x) \stackrel{\text { def. }}{=} \frac{1}{(n+1)^{d}} \prod_{i=1}^{d} \frac{\sin ^{2}\left((n+1) \pi x_{i}\right)}{\sin ^{2}\left(\pi x_{i}\right)}
$$

■ Consider the polynomial $p_{n} \stackrel{\text { def. }}{=} F_{n} * \mu$

- alternatively

$$
p_{n}(x)=\frac{1}{(n+1)^{d}} e_{n}(x)^{*} T_{n} e_{n}(x)=\frac{1}{(n+1)^{d}} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}
$$

- computed from $\hat{\mu}(k)$ using fast Fourier transforms

Theorem (Weak* convergence). We have that $p_{n} \rightharpoonup \mu$. More precisely,

$$
\mathcal{W}_{1}\left(p_{n}, \mu\right) \leqslant \frac{d}{\pi^{2}} \frac{\log (n+1)+3}{n}
$$

Jackson approximation

- Consider the Jackson kernel J_{n}

$$
J_{2 m}(x) \stackrel{\text { def. }}{=} \alpha(m) \prod_{i=1}^{d} \frac{\sin ^{4}\left((m+1) \pi x_{i}\right)}{\sin ^{4}\left(\pi x_{i}\right)}
$$

- Consider the polynomial $q_{n}(x) \stackrel{\text { def. }}{=} J_{n} * \mu$
- also computed with FFT

Jackson approximation

- Consider the Jackson kernel J_{n}

$$
J_{2 m}(x) \stackrel{\text { def. }}{=} \alpha(m) \prod_{i=1}^{d} \frac{\sin ^{4}\left((m+1) \pi x_{i}\right)}{\sin ^{4}\left(\pi x_{i}\right)}
$$

- Consider the polynomial $q_{n}(x) \stackrel{\text { def. }}{=} J_{n} * \mu$
- also computed with FFT

Theorem. (Weak* convergence) We have that $q_{n} \rightharpoonup \mu$. More precisely,

$$
\mathcal{W}_{1}\left(q_{n}, \mu\right) \leqslant \frac{3}{2} \frac{d}{n+2}
$$

Sharpness

- For the worst-case bound, sharpness is revealed in the univariate case

Lemma. For $\mu, \nu \in \mathcal{M}(\mathbb{T})$, we have

$$
\mathcal{W}_{1}(\mu, \nu)=\int_{\mathbb{T}}\left|\mathcal{B}_{1} * \mu(t)-\mathcal{B}_{1} * \nu(t)\right| \mathrm{d} t, \quad \text { where } \quad \mathcal{B}_{1}(t) \stackrel{\text { def. }}{=} \sum_{k=1}^{\infty} \frac{\sin 2 \pi k t}{\pi k}=\frac{1}{2}-t
$$

- Periodic analog of the cumulative distribution formulation of \mathcal{W}_{1} on \mathbb{R}
- If μ is absolutely continuous, leads to unicity of the best approximation
- If $\mu=\delta_{0}$, then $\mathcal{W}_{1}\left(p^{*}, \delta_{0}\right)=\frac{1}{4}(n+1)^{-1}$, matching our lower bound

Sharpness

- For the worst-case bound, sharpness is revealed in the univariate case

Lemma. For $\mu, \nu \in \mathcal{M}(\mathbb{T})$, we have

$$
\mathcal{W}_{1}(\mu, \nu)=\int_{\mathbb{T}}\left|\mathcal{B}_{1} * \mu(t)-\mathcal{B}_{1} * \nu(t)\right| \mathrm{d} t, \quad \text { where } \quad \mathcal{B}_{1}(t) \stackrel{\text { def. }}{=} \sum_{k=1}^{\infty} \frac{\sin 2 \pi k t}{\pi k}=\frac{1}{2}-t
$$

- Periodic analog of the cumulative distribution formulation of \mathcal{W}_{1} on \mathbb{R}
- If μ is absolutely continuous, leads to unicity of the best approximation
- If $\mu=\delta_{0}$, then $\mathcal{W}_{1}\left(p^{*}, \delta_{0}\right)=\frac{1}{4}(n+1)^{-1}$, matching our lower bound
- For the Fejér approximation

Theorem (Saturation). For every measure $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$ not being the Lebesgue measure, there exists a constant c such that

$$
\mathcal{W}_{1}\left(p_{n}, \mu\right) \geqslant \frac{c}{n+1}
$$

- For instance $\mathrm{d} \mu / \mathrm{d} x=1+\cos (2 \pi x):=w(x)$ yields $\mathcal{W}_{1}\left(p_{n}, w\right) \geqslant(4 \pi)^{-1}(n+1)^{-1}$
- However, $\mathcal{W}_{1}\left(p_{n}, \delta_{0}\right) \geqslant \frac{d}{\pi^{2}}\left(\frac{\log (n+2)}{n+1}+\frac{1}{n+3}\right)$

Polynomial Interpolation

Interpolating Polynomial

- The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{(n+1)^{d}} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=F_{n} * \mu$

Interpolating Polynomial

- The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{(n+1)^{d}} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=F_{n} * \mu$

- Let $V \stackrel{\text { def. }}{=} \overline{\operatorname{Supp}} \mu^{Z}$ be the Zariski closure of $\operatorname{Supp} \mu$, and $V\left(\operatorname{Ker} T_{n}\right)$ be the set of common roots of all polynomials in $\operatorname{Ker} T_{n}$.

Theorem. We have $0 \leqslant p_{1, n} \leqslant 1$. If $V\left(\operatorname{Ker} T_{n}\right)=V$, then $p_{1, n}(x)=1$ iff $x \in V$.

$F_{20} * \mu$

$$
p_{1,20}(\mu)
$$

$\rightarrow V\left(\operatorname{Ker} T_{n}\right)=V$ always holds for sufficiently large n if μ discrete ${ }^{1}$ or $\mu \in \mathcal{M}_{+}{ }^{2}$
\rightarrow generalizes a result of [Ongie and Jacob 2016] to varieties of arbitrary dimension

[^4]
Pointwise convergence

- We assume that $\overline{\text { Supp }}^{z} \neq \mathbb{T}^{d}$

Theorem. Let $y \in \mathbb{T}^{d} \backslash \overline{\operatorname{Supp} \mu}^{Z}$, and let g be a polynomial of max-degree m such that $g(y) \neq 0$ and g vanishes on Supp μ. Then, for all $n \geqslant m$,

$$
p_{1, n+m}(y) \leqslant \frac{\|g\|_{\mathrm{L}^{2}}^{2}}{|g(y)|} \frac{m(4 m+2)^{d}}{n+1}+\frac{d m}{n+m+1}
$$

■ In combination with the interpolation property, this proves pointwise convergence to the characteristic function of the support, with rate $O\left(n^{-1}\right)$.

The Discrete Case

- If $\mu=\sum_{j=1}^{r} \lambda_{j} \delta_{x_{j}}$, stronger results are derived with the help of the Vandermonde decomposition of T_{n}

Theorem (Pointwise convergence). Let $x \neq x_{j}$ for all j. If $n+1>\frac{4 d}{\min _{j \neq l}\left\|x_{j}-x_{l}\right\| \infty}$, then

$$
p_{1, n}(x) \leqslant \frac{1}{3(n+1)^{2}} \frac{\lambda_{\max }}{\lambda_{\min }} \sum \frac{1}{\left\|x-x_{j}\right\|_{\infty}^{2}}
$$

Theorem (Weak* convergence). We have

$$
\frac{p_{1, n}}{\left\|p_{1, n}\right\|_{L^{1}}} \rightharpoonup \frac{1}{r} \sum_{j=1}^{r} \delta_{x_{j}}
$$

Numerical Illustrations

Numerical Illustrations

- We consider three synthetic examples
- discrete, $\quad r=15$ points,
- algebraic curve,
- circle,

$$
\begin{array}{ll}
r=15 \text { points, } & \lambda \text { random } \\
r=3000 \text { points, } & \lambda \text { uniform } \\
r=3000 \text { points, } & \lambda \text { uniform }
\end{array}
$$

moments analytical numerical integration analytical

- We compute the semidiscrete optimal transport between the discretized approximation μ^{r} and the density p_{n}

Conclusion

Conclusion

Summary.

New insights on Waaserstein-1 approximation of measures
Computationally efficient polynomial approximations
Pointwise convergence towards the characteristic function of the support
Outlook.
Extension to the noisy regime
Preprint available: arXiv.2203.10531

Thank you for your attention!

References

Candès, E.J. and C. Fernandez-Granda (2014). "Towards a Mathematical Theory of Super-Resolution". In: Comm. Pure Appl. Math. 67.6, pp. 906-956.
(Fisher, Stephen D. (1977). "Best Approximation by Polynomials". In: J. Approx. Th. 21.1, pp. 43-59.

Hua, Y. and T.K. Sarkar (1989). "Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response". In: IEEE Trans. Antennas Propagation 37.2.

T
Kunis, S. et al. (2016). "A Multivariate Generalization of Prony's Method". In: Linear Algebra Appl. 490, pp. 31-47.
Mhaskar, H. N. (2019). "Super-Resolution Meets Machine Learning: Approximation of Measures" I In: J. Fourier Anal. Appl. 25.6, pp. 3104-3122.

Ongie, G. and M. Jacob (2016). "Off-the-grid recovery of piecewise constant images from few Fourier samples". In: SIAM J. Imaging Sci. 9.3, pp. 1004-1041.
Pan, H., T. Blu, and P.L. Dragotti (2014). "Sampling Curves With Finite Rate of Innovation". In: IEEE Trans. Signal Process. 62.2, pp. 458-471.
R Pauwels, E., M. Putinar, and J.B. Lasserre (2020). "Data Analysis From Empirical Moments and the Christoffel Function". In: F. Comp. Math.
-
R. de Prony, G. (1795). "Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques ...". In: Journal de l'École Polytechnique Floréal et Plairial 1.cahier 22, pp. 24-76.

Roy, R. and T. Kailath (1989). "ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques". In: IEEE Trans. Acoustics Speech Signal Process. 37.7, pp. 984-995.

Schmidt, R. (1986). "Multiple Emitter Location and Signal Parameter Estimation". In: IEEE Trans. Antennas Propagation 34.3, pp. 276-280.
R Wageringel, M. (2022). "Truncated moment problems on positive-dimensional algebraic varieties"

[^0]: $0_{\text {images from the cell image library (http://cellimagelibrary.org/) }}$

[^1]: ${ }^{1}$ R. de Prony, 1795, Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques ...
 ${ }^{2}$ Roy and Kailath, 1989, ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques
 ${ }^{3}$ Schmidt, 1986, Multiple Emitter Location and Signal Parameter Estimation
 ${ }^{4}$ Hua and Sarkar, 1989, Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response
 ${ }^{5}$ Candès and Fernandez-Granda, 2014, Towards a Mathematical Theory of Super-Resolution
 ${ }^{6}$ Pan, Blu, and Dragotti, 2014, Sampling Curves With Finite Rate of Innovation
 ${ }^{7}$ Pauwels, Putinar, and Lasserre, 2020, Data Analysis From Empirical Moments and the Christoffel Function
 ${ }^{8}$ Mhaskar, 2019, Super-Resolution Meets Machine Learning: Approximation of Measures

[^2]: ${ }^{1}$ Mhaskar, 2019, Super-Resolution Meets Machine Learning: Approximation of Measures

[^3]: ${ }^{1}$ Fisher, 1977, Best Approximation by Polynomials

[^4]: ${ }^{1}$ Kunis et al., 2016, A Multivariate Generalization of Prony's Method
 ${ }^{2}$ Wageringel, 2022, Truncated moment problems on positive-dimensional algebraic varieties
 ${ }^{3}$ Ongie and Jacob, 2016, Off-the-grid recovery of piecewise constant images from few Fourier samples

