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Super-resolution.  Estimate a signal from coarse measurements

B Recover pointwise sources or

m Ubiquitous problem in imaging and data science, e.g. fluorescence microscopy, X-ray

crystallography, mixture model estimation.

Oimages from the cell image library (http://cellimagelibrary.org/)
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m Borel measures
def.

d € N\ {0}, T = R/Z Torus,

p € M(T?)
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Data model

B Borel measures m Trigonometric moments
d e N\ {0}, T ¥ R/Z Torus, kezd,
e M(19) (k) & / e rmieddu(x)
T!

Singular measures p Fourier partial sum S, (n = 20)

How "well” can we recover u from {fi(k)}, k € {—n,...,n}9?



Previous works

m For discrete measures,
- Prony’s method'; ESPRIT? , MUSIC® , matrix pencils” .
- Variational methods, e.g. TV-minimization® .

B For general measures,

- FRI approaches® .
- Christoffel functions’ .

Prony Variational Approximation

® Our work shares similarities with [Mhaskar 2019], use another metric on measures
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2. Polynomial Approximations in Wasserstein-1
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- Upper bound for F, * p
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Preliminaries



Wasserstein-1 distance

B The quality of an approximation depends on the metric over /\/l(']I‘d)1
B Examples include f-divergences, MMD, and \Wasserstein distances

B Wasserstein distances metrize the weak* topology (on compact sets), i.e.

Bn = p == Wp(pn, ) =0

ol

B Wasserstein-1 further admits the practical (dual) formulation

W)= sup [ fdu-v)
fe€(T9),Lip(f)<1

— requires no positivity, only u(T9) = v/(T9)
— Lip(f) < 1 means |[f(x) — f(y)| < min;cza |x —y + K|

1, VX7y

L Mhaskar, 2019, Super-Resolution Meets Machine Learning: Approximation of Measures



Moment Matrix

Definition (Moment matrix). Given {fi(k)}, k € {—n,...,n}9 we define the
moment matrix

To S [k =], o e

,
Th = Zo'ju}") vj(")*
j=1

® When p = 25:1 /\jﬁxj, T, admits the
T, = ANA*

here A = [ *2”T<k’Xj>] and A = Diag(}).
wher € ke{0,...,n}d, je[1,r] Ig( )



Polynomial Approximations



Best Polynomial Approximation

B Assume p is of finite total variation,

ulry =1

® We make no further assumptions



Best Polynomial Approximation

B Assume p is of finite total variation,

plrv =1
B We make no further assumptions

Theorem (Worst-case bound).  For every d,n € N, for every p € M(T?), there

exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it
holds that

sup  min Wi(p,p) > ———
HEM deg(p)<n (7. 12 4(n+1)

Idea of the proof

sup min Wi (p, 1) = min Wi (p, o)
wo P P

=min sup |f—pxfloc  (B(x) = p(—x))
P Lip(f)<1

WV

sup min |f — ploc
Lip(f)<t P
— worst-case error for best polynomial approximation of Lipschitz functions

— generalize a univariate argument of [Fisher 1977] to the multivariate case

L Fisher, 1977, Best Approximation by Polynomials




Fejér approximation

m Consider the Fejér kernel F,

2
o + 1)mx;)
= (5% U Hsm ((n i
() n+1)4 sin? (mx;)

m Consider the polynomial p, “F, m
- alternatively
1
p(x) = men(x)*Tnen( (n+ 0y 2> 0l (v (x)*

- computed from ji(k) using fast Fourier transforms

1
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Fejér approximation

m Consider the Fejér kernel F,

2
" + 1)mx;)
Eo(x U Hsm ((n ;
() n+1)4 sin? (mx;)

m Consider the polynomial p, = Fns*p
- alternatively

pn(x) = men(x)* Then(x) (n+ 1)¢ ZUJUJ M x)*

,
Lﬁ 1\,‘: “‘v—ﬂ""‘*‘*»wy"’] .

Theorem (Weak* convergence). We have that p, — u. More precisely,

d log(n+1)+3
o) < & B 1 3



Jackson approximation

m Consider the Jackson kernel J,

Jom(x) cg a(m )H sin ((m+1)7rx,)

sin®(7x;)

m Consider the polynomial gn(x) ©
- also computed with FFT

e
i




Jackson approximation

m Consider the Jackson kernel J,

Jom(x) cg a(m )H sin ((m+1)7rx,)

sin®(7x;)

m Consider the polynomial gn(x) & e m

Theorem.

(Weak* convergence) We have that g, — p. More precisely,




m For the worst-case bound, sharpness is revealed in the univariate case

Lemma. For p,v € M(T), we have

Wi, v) = / By * u(t) — By x v(t)|dt, where By() &> sin 2”“ % —t
T k=1

- Periodic analog of the cumulative distribution formulation of YW; on R
- If p is absolutely continuous, leads to unicity of the best approximation
- If = do, then Wi (p*, do) = %(n +1)71, matching our lower bound



m For the , sharpness is revealed in the univariate case

Lemma. For p,v € M(T), we have

Wi(p,v) = / |B1 % u(t) — By xv(t)|dt, where Bi(t) g Z sin 27rkt % _t
’ k=1

- Periodic analog of the cumulative distribution formulation of YW; on R
- If p is absolutely continuous, leads to

of the best approximation
- If” = dp, then Wl(p*,éo) =

1(n+1)~*, matching our lower bound

m For the

Theorem (Saturation). For every measure u € M(T9) not being the Lebesgue

measure, there exists a constant ¢ such that

c
Wl(Pny ,u) >

- For instance du/dx = 1+ cos(2mx) := w(x) yields Wi (pn, w) > (47) " (n+1)7!
- However, Wi (pn, do) > % (M + ﬁ)



Polynomial Interpolation




Interpolating Polynomial

(n),(m)

B The singular value decomposition: T, = > ;:1 oju;V; * allows to define
(n)
X E X
ply"( ) ( l)d | (

— unweighted counterpart of p, = Fp * p



Interpolating Polynomial

B The singular value decomposition: T, = Z;zl O’leJ(n) ()

v; allows to define
plyn(X) (n o 1)d Z'

— unweighted counterpart of p, = Fp % p

mlet VY Supp ,uZ be the Zariski closure of Supp p, and V(Ker T,) be the set of
common roots of all polynomials in Ker T,.

Theorem. We have 0 < p1,, < 1. If V(Ker T;) = V, then p1 n(x) =1 iff x € V.
m Fao * 1 p1,20(K)
_—
N\
()
N

— V/(Ker T,,) = V always holds for sufficiently large n if y discrete

or € My
— generalizes a result of

to varieties of arbitrary dimension

Kunis et al., 2016, A Multivariate Generalization of Prony’s Method
Wageringel, 2022, Truncated moment problems on positive-dimensional algebraic varieties

Ongie and Jacob, 2016, Off-the-grid recovery of piecewise constant images from few Fourier samples



Pointwise convergence

® We assume that Supp ,uz # T4

Theorem. Let y € T\ Supp ,LLZ, and let g be a polynomial of max-degree m such

that g(y) # 0 and g vanishes on Supp u. Then, for all n > m,

"g"Ez m(4m + 2)9 dm

<
p1,n+m(Y) 1g)] rTy—

B In combination with the interpolation property, this proves

of the support, with rate O(n=1).



The Discrete Case

mfpu= er':1 )\jéxj, stronger results are derived with the help of the Vandermonde
decomposition of T,

P ) ; 4d
Theorem (Pointwise convergence). Let x # x; forall j. If n4+1 > S =
then

1 Amax 1

PLa(X)S o D
" 3(" + 1)2 )‘min "X - Xj"%o

Theorem (Weak* convergence). We have
,

Pi,n 1
> L\ O,
ool ;1 K



Numerical lllustrations




Numerical lllustrations

B We consider three synthetic examples
- discrete, r = 15 points, A random moments analytical
- algebraic curve, r = 3000 points, A uniform  numerical integration
- circle, r = 3000 points, A uniform  analytical

B We compute the semidiscrete optimal transport between the discretized
approximation p' and the density p,

10°
i
107
—Wi(pia(n), %)
=W (5 i, 1°)
102b Mo )




Conclusion




Conclusion

Summary.

New insights on Waaserstein-1 approximation of measures
Computationally efficient polynomial approximations

Pointwise convergence towards the characteristic function of the support
Outlook.
Extension to the noisy regime

Preprint available: arXiv.2203.10531



Thank you for your attention!
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