A Low Rank Approach to Off-the-Grid Sparse Super-Resolution

Paul Catala ${ }^{1}$
Joint work with Vincent Duval ${ }^{2,3}$ and Gabriel Peyré ${ }^{1}$
${ }^{1}$ DMA, Ecole Normale Supérieure, PSL, CNRS UMR 8553
${ }^{2}$ Mokaplan, Inria Paris
${ }^{3}$ CEREMADE, Université Paris-Dauphine, PSL

ITWIST, November 2018

Sparse Super-Resolution

Recover pointwise sources from low-resolution and noisy observations.

Astrophysics (2D)

Molecule fluorescence (3D)

Also neural spikes (1D), seismic imaging (1.5D), ...

Single Molecule Localization Microscopy

Figure: bigwww.epfl.ch/smlm/

Overview

Model

Low-Rank Semidefinite Relaxations

Algorithm: FFT-Based Conditional Gradient

Numerics

Model

Degradation Model

Signal to recover: discrete Radon measure on $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}$:

$$
\mu_{0}=\sum_{i=1}^{r} a_{i} \delta_{x_{i}}, \quad a_{i} \in \mathbb{R}, \quad x_{i} \in \mathbb{T}^{d}
$$

Degradation Model

Signal to recover: discrete Radon measure on $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}$:

$$
\mu_{0}=\sum_{i=1}^{r} a_{i} \delta_{x_{i}}, \quad a_{i} \in \mathbb{R}, \quad x_{i} \in \mathbb{T}^{d}
$$

Forward operator: $\Phi: \mathcal{M}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C}^{N}$, such that

$$
\Phi \mu \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} \varphi(x) \mathrm{d} \mu(x), \quad \varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{N}(x)\right)^{\top}
$$

with φ continuous function.

Fourier Approximation Of Operators

Important case: Φ Fourier operator, i.e.

$$
\Phi \mu=\mathcal{F} \mu \stackrel{\text { def. }}{=}\left(\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle k, x\rangle} \mathrm{d} \mu(x)\right)_{k \in \Omega_{c}}, \quad \Omega_{c}=\llbracket-f_{c}, f_{c} \rrbracket^{d},
$$

for some cutoff frequency $f_{c} \in \mathbb{N}^{*}$ (Candès and Fernandez-Granda [2014])

Fourier Approximation Of Operators

Important case: Φ Fourier operator, i.e.

$$
\Phi \mu=\mathcal{F} \mu \stackrel{\text { def. }}{=}\left(\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle k, x\rangle} \mathrm{d} \mu(x)\right)_{k \in \Omega_{c}}, \quad \Omega_{c}=\llbracket-f_{c}, f_{c} \rrbracket^{d},
$$

for some cutoff frequency $f_{c} \in \mathbb{N}^{*}$ (Candès and Fernandez-Granda [2014])

General case: $\Phi: \mathcal{M}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C}^{N}$ any integral operator, spectral approximation:

$$
\Phi \approx \mathcal{A} \circ \mathcal{F}
$$

where \mathcal{A} solves

$$
\min _{\mathcal{A} \in \mathcal{M}_{N,\left|\Omega_{c}\right|}(\mathbb{C})}\|\Phi-\mathcal{A} \circ \mathcal{F}\|
$$

Ideal Low-Pass Filtering

Convolution with Dirichlet kernel

$$
\mathcal{A}=\mathrm{Id}
$$

Figure: $\mathcal{F}^{*} y$

Gaussian Filtering

Convolution with (periodized) Gaussian kernel ψ

$$
\mathcal{A}=\operatorname{Diag}(\hat{\psi}(-k))_{k \in \Omega_{c}}
$$

Figure: $\mathcal{F}^{*} y$

Gaussian Filtering + Subsampling

Not a convolution, sampling grid \mathcal{G}

$$
\mathcal{A}=\left(\hat{\psi}(-k) e^{2 i \pi\langle k, t\rangle}\right)_{(t, \omega) \in \mathcal{G} \times \Omega_{c}}
$$

Figure: y, $\mathcal{G}=64 \times 64$

Foveation

Not a convolution, sampling grid \mathcal{G}

Figure: $y, \mathcal{G}=64 \times 64$

Sparse Recovery

Measurements:

$$
y=\mathcal{A} \mathcal{F} \mu_{0}+w \in \mathbb{C}^{N}
$$

Sparse Recovery

Measurements: $\quad y=\mathcal{A F} \mu_{0}+w \in \mathbb{C}^{N}$

Grid-free regularization: Total Variation of measures

$$
|\mu|\left(\mathbb{T}^{d}\right) \stackrel{\text { def. }}{=} \sup \left\{\int \eta \mathrm{d} \mu ; \eta \in \mathcal{C}\left(\mathbb{T}^{d}\right),\|\eta\|_{\infty} \leqslant 1\right\}
$$

$$
|\mu|\left(\mathbb{T}^{d}\right)=\|a\|_{\ell^{1}}
$$

BLASSO (Azaïs et al. [2015])

$$
\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \frac{1}{2}\|y-\mathcal{A F} \mu\|^{2}+\lambda|\mu|(X)
$$

Related Works

- Support discretization \longrightarrow LASSO - prox methods (Donoho [1992]) \longrightarrow fast, inaccurate
- Greedy methods - MP, FW (Bredies and Pikkarainen [2013]) \longrightarrow continuous setting, slow convergence
- SDP relaxation (Candès and Fernandez-Granda [2014]) \longrightarrow simple, stable, not scalable

Contributions

- SDP approach combined with conditional gradient algorithm
- scalable FFT-based computations

Low-Rank Semidefinite Relaxations

Moment Matrices

Let $\ell \geqslant f_{c}, m=(2 \ell+1)^{d}$.
Definition (Moment matrices)
Given $\nu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that for every multi-indices $i, j \in \llbracket-\ell, \ell \rrbracket^{d}$,

$$
R(\nu)_{i, j}=\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle i-j, x\rangle} \mathrm{d} \nu(x)
$$

Definition (Generalized Tœplitz matrices)

$R \in \mathbb{C}^{m \times m}$ is a generalized Tœplitz matrix, denoted $R \in \mathcal{T}_{m}$, if for every multi-indices $i, j, k \in \llbracket-\ell, \ell \rrbracket^{d}$ such that $\|i+k\|_{\infty} \leqslant \ell$ and $\|j+k\|_{\infty} \leqslant \ell$,

$$
R_{i+k, j+k}=R_{i, j}
$$

Semidefinite Hierarchies

Lasserre [2001]

- BLASSO only involves a few trigonometric moments of μ and $|\mu|$
- It may be cast over the cone of moment sequences ...
- ... approximable by a hierarchy of semidefinite cones ...
- ... involving PSD + GT matrices of increasing size

Semidefinite Hierarchies

Lasserre [2001]

$$
\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \frac{1}{2}\|y-\mathcal{A} \mathcal{F} \mu\|^{2}+\lambda|\mu|(X)
$$

- BLASSO only involves a few trigonometric moments of μ and $|\mu|$
- It may be cast over the cone of moment sequences ...
- ... approximable by a hierarchy of semidefinite cones ...
- ... involving PSD + GT matrices of increasing size

Moment relaxation at order ℓ

$$
\begin{align*}
\min _{R, z, \tau} & \frac{1}{2}\|y-\mathcal{A} z\|^{2}+\frac{\lambda}{2}\left(\frac{1}{m} \operatorname{Tr}(R)+\tau\right) \\
\text { s.t. } & \begin{cases}(a) & \mathcal{R}=\left[\begin{array}{cc}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right] \succeq 0, \quad \tilde{z}_{k}=z_{k}, \forall k \in \Omega_{c} \\
(b) & R \in \mathcal{T}_{m}\end{cases}
\end{align*}
$$

Semidefinite Hierarchies

Lasserre [2001]

$$
\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \frac{1}{2}\|y-\mathcal{A F} \mu\|^{2}+\lambda|\mu|(X)
$$

- BLASSO only involves a few trigonometric moments of μ and $|\mu|$
- It may be cast over the cone of moment sequences ...
- ... approximable by a hierarchy of semidefinite cones ...
- ... involving PSD + GT matrices of increasing size

Moment relaxation at order ℓ

$$
\begin{array}{ll}
\min _{R, z, \tau} & \frac{1}{2}\|y-\mathcal{A z}\|^{2}+\frac{\lambda}{2}\left(\frac{1}{m} \operatorname{Tr}(R)+\tau\right) \\
\text { s.t. } & \begin{cases}\text { (a) } & \mathcal{R}=\left[\begin{array}{ll}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right] \succeq 0, \quad \tilde{z}_{k}=z_{k}, \forall k \in \Omega_{c} \\
(b) & R \in \mathcal{T}_{m}\end{cases}
\end{array}
$$

Proposition

For any $\ell \geqslant f_{c}, \min \left(\mathcal{P}_{\lambda}^{(\ell)}\right) \leqslant \min \left(\mathcal{P}_{\lambda}^{(\ell+1)}\right) \leqslant \min \left(\mathcal{P}_{\lambda}\right)$. Moreover, $\lim _{\ell \rightarrow \infty} \min \left(\mathcal{P}_{\lambda}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda}\right)$

Collapsing Of The Hierarchy

Proposition

Let $\ell \geqslant f_{c}$. Then $\min \left(\mathcal{P}_{\lambda}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda}\right)$ iff there exists (R, z, τ) solutions to $\left(\mathcal{P}_{\lambda}^{(\ell)}\right)$ and μ solution to $\left(\mathcal{P}_{\lambda}\right)$ such that

$$
\tau=|\mu|\left(\mathbb{T}^{d}\right) \quad \text { and } \quad R=R(|\mu|)
$$

Collapsing Of The Hierarchy

Proposition

Let $\ell \geqslant f_{c}$. Then $\min \left(\mathcal{P}_{\lambda}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda}\right)$ iff there exists (R, z, τ) solutions to $\left(\mathcal{P}_{\lambda}^{(\ell)}\right)$ and μ solution to $\left(\mathcal{P}_{\lambda}\right)$ such that

$$
\tau=|\mu|\left(\mathbb{T}^{d}\right) \quad \text { and } \quad R=R(|\mu|)
$$

When do we have $\min \left(\mathcal{P}_{\lambda}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda}\right)$?

- When $d=1$, it holds for any $\ell \geqslant f_{c}$. (Tang et al. [2013])
- When $d=2$, there exists $\ell \geqslant f_{c}$ such that the relaxation is tight.
- When $d>2$, we do not know in general.

Collapsing detected via flatness criterion on R (Curto and Fialkow [1996])

Collapsing Of The Hierarchy

Proposition

Let $\ell \geqslant f_{c}$. Then $\min \left(\mathcal{P}_{\lambda}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda}\right)$ iff there exists (R, z, τ) solutions to $\left(\mathcal{P}_{\lambda}^{(\ell)}\right)$ and μ solution to $\left(\mathcal{P}_{\lambda}\right)$ such that

$$
\tau=|\mu|\left(\mathbb{T}^{d}\right) \quad \text { and } \quad R=R(|\mu|)
$$

When do we have $\min \left(\mathcal{P}_{\lambda}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda}\right)$?

- When $d=1$, it holds for any $\ell \geqslant f_{c}$. (Tang et al. [2013])
- When $d=2$, there exists $\ell \geqslant f_{c}$ such that the relaxation is tight.
- When $d>2$, we do not know in general.

Collapsing detected via flatness criterion on R (Curto and Fialkow [1996])
How to retrieve μ from $R(|\mu|)$?
Algebraic method (Laurent [2010], Lasserre [2010], Josz et al. [2017])

Low-Rank Structure

Proposition

In the case of collapsing, $\left(\mathcal{P}_{\lambda}^{(\ell)}\right)$ always admits a solution \mathcal{R}_{λ} such that rank $\mathcal{R}_{\lambda} \leqslant r, r$ being the number of spikes in a solution of $\left(\mathcal{P}_{\lambda}\right)$.

Proof.

Results from the fact that if $\nu=\sum_{i=1}^{r} a_{i} \delta_{x_{i}}$, then $\operatorname{rank} R(\nu) \leqslant r$.

Figure: $\left(r=5\right.$ spikes, $f_{c}=5$, $d=2$). Singular values of primal and dual matrices

Algorithm: FFT-Based Frank-Wolfe

Penalized Problem

Frank-Wolfe (aka Conditional Gradient):

- handles well low-rank iterates
- cannot handle the geometry induced by (a) + (b)

Penalized Problem

$$
\begin{aligned}
& \overparen{\Xi_{\tau}} \min _{R, z, \tau} \frac{1}{2}\|y-\mathcal{A z}\|^{2}+\frac{\lambda}{2}\left(\frac{1}{m} \operatorname{Tr}(R)+\tau\right) \\
& \quad \text { s.t. }\left\{\begin{array}{l}
(a)\left[\begin{array}{ll}
R & \tilde{z} \\
z^{*} & \tau
\end{array}\right] \succeq 0, \quad \tilde{z}_{k}=z_{k}, \forall k \in \Omega_{c} \\
(b) R \in \mathcal{T}_{m}
\end{array}\right.
\end{aligned}
$$

Frank-Wolfe (aka Conditional Gradient):

- handles well low-rank iterates
- cannot handle the geometry induced by (a) + (b)
\Longrightarrow Penalize Toeplitz constraint (b)
$\min _{R, z, \tau} \frac{1}{2}\|y-\mathcal{A} z\|^{2}+\frac{\lambda}{2}\left(\frac{1}{m} \operatorname{Tr}(R)+\tau\right)+\frac{1}{2 \rho}\left\|R-P_{\mathcal{T}_{m}}(R)\right\|^{2}$
s.t. $\quad \mathcal{R}=\left[\begin{array}{cc}R & \tilde{z} \\ \tilde{z}^{*} & \tau\end{array}\right] \succeq 0, \quad \tilde{z}_{k}=z_{k}, \forall k \in \Omega_{c}$.

Alternating Descent Conditional Gradient Method

Frank-Wolfe steps:

1. $\mathcal{S}_{\star} \in \operatorname{argmin}\left\langle\nabla f\left(\mathcal{R}_{t}\right), \mathcal{S}\right\rangle$ $\mathcal{S} \in \mathcal{D}$
2. $\mathcal{R}_{t+1}=\mathcal{R}_{t}+c\left(\mathcal{S}_{\star}-\mathcal{R}_{t}\right)$, with $c \in[0,1]$

\oplus Sparse iterates Simple LM
\ominus Slow convergence: $f\left(\mathcal{R}_{t}\right)-f\left(\mathcal{R}^{\star}\right) \leqslant O\left(\frac{1}{t}\right)$

Jaggi [2013]

Alternating Descent Conditional Gradient Method

Frank-Wolfe steps:

1. $\mathcal{S}_{\star} \in \operatorname{argmin}\left\langle\nabla f\left(\mathcal{R}_{t}\right), \mathcal{S}\right\rangle$ $\mathcal{S} \in \mathcal{D}$
2. $\mathcal{R}_{t+1}=\mathcal{R}_{t}+c\left(\mathcal{S}_{\star}-\mathcal{R}_{t}\right)$, with $c \in[0,1]$

\oplus Sparse iterates
\oplus Simple LM
\ominus Slow convergence: $f\left(\mathcal{R}_{t}\right)-f\left(\mathcal{R}^{\star}\right) \leqslant O\left(\frac{1}{t}\right)$

Jaggi [2013]

Algo: Building Moment Matrix
Set: $\mathcal{U}_{0}=[0 \ldots 0]^{\top}, D_{0}: \operatorname{tr} \mathcal{R}_{\star} \leqslant D_{0}$ For $t=1, \ldots$ do

1. $v_{t}=D_{0} \operatorname{argmin} v^{\top} \nabla f\left[\mathcal{U}_{t} \mathcal{U}_{t}^{*}\right] v$
2. $\widehat{\mathcal{U}}_{t+1}=\left[\alpha_{t} \mathcal{U}_{t}, \beta_{t} v_{t}\right]$, with Is on (α_{t}, β_{t}) (closed form)
3. $\mathcal{U}_{t+1}=\operatorname{bfgs}\left(F(\mathcal{U})\right.$, start at $\left.\widehat{\mathcal{U}}_{t+1}\right)$

Numerics

Numerics

Figure: $f_{c}=25, \lambda=5.10^{-4}\left\|\Phi^{*} y\right\|_{\infty}, \rho=10^{3}$
Support localization relative error $=4.7 \times 10^{-3}$

Numerics

Figure: $f_{c}=30, \lambda=5.10^{-3}\left\|\Phi^{*} y\right\|_{\infty}, \rho=5.10^{5}\left\|\Phi^{*} y\right\|_{\infty}^{-1}$.
Support localization error $\frac{\left\|x_{\text {recov }}-x_{0}\right\|}{\left\|x_{0}\right\|}=1.57 \times 10^{-2}$

Numerics

Figure: Mean number of iterations before convergence (over 200 random trials), with respect to sparsity of the solution measure

Numerics

Jaccard index $\stackrel{\text { def. }}{=}$
 True Positive
 True Positive + False Positive + False Negative

(a) Jaccard index wrt λ and ρ (up to normalization factors). Each pixel is obtained by averaging over 20 images.

(b) Jaccard index (blue) and time (red) wrt number of BFGS iterations. Values are averaged over 20 images.

Conclusion

- SDP formulation for problem the problem of spikes superresolution...
- ... which admits low-rank solutions
- Scalable method in 2D, based on a conditional gradient approach
- Future works: Lasserre's hierarchy encompasses large class of problems (polynomial optimization, optimal transport, etc...) \longrightarrow possible extensions for our algorithm

Thank you for your attention!

Fast-Fourier-Tranforms-Based Computations

- Leading eigenvector is computed using Power Iteration.
- Requires only computing $\nabla f \cdot v$, with

$$
\nabla f\left(\mathcal{U}^{*}\right)=\left[\begin{array}{cc}
\frac{1}{n} I_{n} & p \\
p^{*} & 1
\end{array}\right]+\frac{1}{\rho} \mathcal{U} \mathcal{U}^{*}-\frac{1}{\rho} P_{V_{\Theta}}\left(\mathcal{U} \mathcal{U}^{*}\right)
$$

- Main costly operation: $P_{V_{\Theta}}\left(\mathcal{U L}^{*}\right) \cdot v$

Fast-Fourier-Tranforms-Based Computations

- Leading eigenvector is computed using Power Iteration.
- Requires only computing $\nabla f \cdot v$, with

$$
\nabla f\left(\mathcal{U}^{*}\right)=\left[\begin{array}{cc}
\frac{1}{n} I_{n} & p \\
p^{*} & 1
\end{array}\right]+\frac{1}{\rho} \mathcal{U} \mathcal{U}^{*}-\frac{1}{\rho} P_{V_{\Theta}}\left(\mathcal{U} \mathcal{U}^{*}\right)
$$

- Main costly operation: $P_{V_{\Theta}}\left(\mathcal{U L}^{*}\right) \cdot v$

Key Ingredient: $O\left(f_{c}^{d} \log \left(f_{c}\right)\right)$ FFT-Based Computations

Toeplitz-Vector Multiplication
Let $x \in \mathbb{C}^{(n+1)^{d}}, t \in \mathbb{C}^{(2 n+1)^{d}}$, and $T=\operatorname{Tœp}(t)$. Then
$T x=\operatorname{Pad}^{-1} \circ \mathcal{F}^{-1}(\langle\mathcal{F} \circ \operatorname{Pad}(x), \mathcal{F}(t)\rangle)$

Toeplitz Projection
Let $U=\left[U_{1}, \ldots, U_{r}\right] \in \mathbb{C}^{(n+1)^{d} \times r}$.
Then $P_{\mathcal{T}}\left[U U^{*}\right]=\operatorname{T} \propto p(t)$, with

$$
t_{i} \propto\left[\sum_{k} \mathcal{F}^{-1}\left(\left|\mathcal{F} \circ \operatorname{Pad}\left(U_{k}\right)\right|^{2}\right)\right]
$$

Support Recovery via Root-Finding

Dual polynomial $\eta_{\lambda}=\sum p_{k} e^{2 i \pi\langle k, x\rangle}$

Root-finding:

- $P(X)=\sum_{k} p_{k} X^{k}, X \in \mathbb{C}^{d}$
- Solve $|P(X)|^{2}-1=0$
- Select roots s.t. $|X|=1$

Figure: Roots of $1-|P|^{2}$, with $P=\sum p_{k} X^{k}$

Sensitivity Analysis

Figure: Rank of $\mathcal{R}_{\lambda, \rho}$ w.r.t. ρ

Figure: Roots trajectory w.r.t ρ.

J. M. Azaïs, Y. de Castro, and F. Gamboa. Spike detection from inaccurate sampling. Applied and Computational Harmonic Analysis, 38(2):177-195, 2015.
N. Boyd, G. Schiebinger, and B. Recht. The alternating descent conditional gradient method for sparse inverse problems. In CAMSAP, pages 57-60, 2015.
K. Bredies and H. K. Pikkarainen. Inverse problems in spaces of measures. ESAIM: Control, Optimization and Calculus of Variations, 19(1):190-218, 2013.
E.J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Comm. Pure Appl. Math, 67(6):906-956, 2014.
R.E. Curto and L.A. Fialkow. Solution of the truncated complex moment problem for flat data. Memoirs of the AMS, (568), 1996.
D. L. Donoho. Superresolution via sparsity constraints. SIAM Journal on Mathematical Analysis, 23(5):1309-1331, 1992.
M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, volume 28, 2013.
C. Josz, J.B. Lasserre, and B. Mourrain. Sparse polynomial interpolation: Compressed sensing, super resolution, or prony? arXiv:1708.06187, 2017.
J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.
J. B. Lasserre. Moments, positive polynomials and their applications. Imperial College Press Optimization Series. Imperial College Press, London, 2010. ISBN 978-1-84816-445-1. URL http://opac.inria.fr/record=b1130505.
M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging Applications of Algebraic Geometry, volume 149. Springer new York, 2010.
G. Tang, B. N. Bhaskar, P. Shah, and B. Recht. Compressed sensing off the grid. IEEE Trans. Inf. Theory, 59(11):7465-7490, 2013.

