Trigonometric Approximations of Singular Measures

Paul Catala. Joint work with M. Hockmann, S. Kunis and M. Wageringel
University of Osnabrück.
MAIA 2022, Reinhardswaldschule, 26.09-30.09

Motivation

Super-resolution. Estimate a signal from a few coarse linear measurements

source - www.cellimagelibrary.org
■ Ubiquitous problem in imaging and data science (low-pass filtering)

- Fluorescence microscopy
- Astronomical imaging
- Mixture estimation
- Signals of interest are often structured: pointwise sources, curves, surfaces...

Data model

- Radon measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ Torus,

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

Data model

- Radon measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ Torus,

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

- Trigonometric moments
$k \in \Omega \subset \mathbb{Z}^{d}$, typically $\Omega=\{-n, \ldots, n\}^{d}$

$$
\hat{\mu}(k) \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} d \mu(x)
$$

Fourier partial sum $S_{n} \mu(n=20)$

Data model

- Radon measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ Torus,

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

- Trigonometric moments
$k \in \Omega \subset \mathbb{Z}^{d}$, typically $\Omega=\{-n, \ldots, n\}^{d}$

$$
\hat{\mu}(k) \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} \mathrm{d} \mu(x)
$$

Fourier partial sum $S_{n} \mu(n=20)$

How can we recover μ from $\{\hat{\mu}(k)\}, k \in\{-n, \ldots, n\}^{d}$?

Previous works

■ For discrete measures \rightarrow "interpolation"

- Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete)

Dual polynomial

Previous works

■ For discrete measures \rightarrow "interpolation"

- Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete)

Dual polynomial

Prony (curve)

- For general measures,
- FRI approaches [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]

Previous works

■ For discrete measures \rightarrow "interpolation"

- Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete)

Dual polynomial

Prony (curve)

Approximation

- For general measures,
- FRI approaches [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]
- Polynomial approximations [Mhaskar, 2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

Previous works

■ For discrete measures \rightarrow "interpolation"

- Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete)

Dual polynomial

Prony (curve)

Approximation

- For general measures,
- FRI approaches [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]
- Polynomial approximations [Mhaskar, 2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]
- In this work:
- easily computable polynomial approximations, with sharp rates in \mathcal{W}_{1} metric (similarities with [Mhaskar, 2019], use of different distance between measures)
- easily computable polynomial interpolant for algebraic varieties

Overview

1. Polynomial Approximations in Wasserstein-1
2. Polynomial Interpolation
3. Numerical illustrations
4. Conclusion

Polynomial Approximations

Wasserstein-1 distance

- We need a distance between measures

■ Examples include f-divergences, MMD, and Wasserstein distances

- Wasserstein distances metrize the weak* topology (on compact sets) [Santambrogio, 2015], i.e.

$$
\left(\forall \varphi \in \mathscr{C}\left(\mathbb{T}^{d}\right), \int \varphi \mathrm{d} \mu_{n} \rightarrow \int \varphi \mathrm{~d} \mu\right) \Longleftrightarrow \mathcal{W}_{p}\left(\mu_{n}, \mu\right) \rightarrow 0
$$

- Wasserstein-1 further admits the dual formulation

$$
\mathcal{W}_{1}(\mu, \nu)=\sup _{f \in \mathscr{C}\left(\mathbb{T}^{d}\right), \operatorname{Lip}(f) \leqslant 1} \int f \mathrm{~d}(\mu-\nu)
$$

\rightarrow requires no positivity, only $\mu\left(\mathbb{T}^{d}\right)=\nu\left(\mathbb{T}^{d}\right)$
$\rightarrow \operatorname{Lip}(f) \leqslant 1$ means $|f(x)-f(y)| \leqslant \min _{k \in \mathbb{Z}^{d}}\|x-y+k\|_{1}, \forall x, y$

Fejér approximation

- The Fejér kernel F_{n} is defined by

$$
F_{n}(x) \stackrel{\text { def. }}{=} \frac{1}{(n+1)^{d}} \prod_{i=1}^{d} \frac{\sin ^{2}\left((n+1) \pi x_{i}\right)}{\sin ^{2}\left(\pi x_{i}\right)}
$$

■ Consider the polynomial $p_{n} \stackrel{\text { def. }}{=} F_{n} * \mu$, i.e. $p_{n}(x)=\int F_{n}(y-x) \mathrm{d} \mu(y)$

- Computed using Fast Fourier Transforms:

$$
p_{n}(x)=(n+1)^{-d} \sum \hat{\mu}(k-l) e^{-2 i \pi(k-l) x}
$$

Fejér approximation

- The Fejér kernel F_{n} is defined by

$$
F_{n}(x) \stackrel{\text { def. }}{=} \frac{1}{(n+1)^{d}} \prod_{i=1}^{d} \frac{\sin ^{2}\left((n+1) \pi x_{i}\right)}{\sin ^{2}\left(\pi x_{i}\right)}
$$

■ Consider the polynomial $p_{n} \stackrel{\text { def. }}{=} F_{n} * \mu$, i.e. $p_{n}(x)=\int F_{n}(y-x) \mathrm{d} \mu(y)$

- Computed using Fast Fourier Transforms:

$$
p_{n}(x)=(n+1)^{-d} \sum \hat{\mu}(k-l) e^{-2 i \pi(k-l) x}
$$

Theorem (Weak* convergence). Assuming (only) that μ has finite total variation, we have that $p_{n} \rightharpoonup \mu$. More precisely,

$$
\frac{d}{\pi^{2}}\left(\frac{\log (n+2)}{n+1}+\frac{3}{n}\right) \leqslant \mathcal{W}_{1}\left(p_{n}, \mu\right) \leqslant \frac{d}{\pi^{2}} \frac{\log (n+1)+3}{n}
$$

Saturation

- Further assumptions on μ do not improve so much this bound.

Theorem (Saturation). For every measure $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$ not being the Lebesgue measure, there exists a constant c such that

$$
\mathcal{W}_{1}\left(p_{n}, \mu\right) \geqslant \frac{c}{n+1}
$$

- For instance $\mathrm{d} \mu / \mathrm{d} x=1+\cos (2 \pi x):=w(x)$ yields $\mathcal{W}_{1}\left(p_{n}, w\right) \geqslant(4 \pi)^{-1}(n+1)^{-1}$

Jackson approximation

- The Jackson kernel J_{n} is defined by

$$
J_{2 m}(x) \stackrel{\text { def. }}{=} \frac{3}{m\left(2 m^{2}+1\right)} \prod_{i=1}^{d} \frac{\sin ^{4}\left((m+1) \pi x_{i}\right)}{\sin ^{4}\left(\pi x_{i}\right)}
$$

- Consider the polynomial $q_{n} \stackrel{\text { def. }}{=} J_{n} * \mu$
- Computed with Fast Fourier Transforms

Jackson approximation

- The Jackson kernel J_{n} is defined by

$$
J_{2 m}(x) \stackrel{\text { def. }}{=} \frac{3}{m\left(2 m^{2}+1\right)} \prod_{i=1}^{d} \frac{\sin ^{4}\left((m+1) \pi x_{i}\right)}{\sin ^{4}\left(\pi x_{i}\right)}
$$

- Consider the polynomial $q_{n} \stackrel{\text { def. }}{=} J_{n} * \mu$
- Computed with Fast Fourier Transforms

Theorem. (Weak* convergence) Assuming that μ has finite total variation, we have that $q_{n} \rightharpoonup \mu$. More precisely,

$$
\mathcal{W}_{1}\left(q_{n}, \mu\right) \leqslant \frac{3}{2} \frac{d}{n+2}
$$

Best Polynomial Approximation

■ Assume μ is of finite total variation, $\|\mu\|_{T V}=1$

Theorem. (Worst-case bound) For every $d, n \in \mathbb{N}$, for every $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$, there exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it holds that

$$
\sup _{\mu \in \mathcal{M}} \min _{\operatorname{deg}(p) \leqslant n} \mathcal{W}_{1}(p, \mu) \geqslant \frac{1}{4(n+1)}
$$

Sketch of proof:

- Best approximation in the worst-case:

$$
\begin{aligned}
\sup _{\mu} \min _{p} \mathcal{W}_{1}(p, \mu) & \geqslant \min _{p} \mathcal{W}_{1}\left(p, \delta_{0}\right) \\
& =\min _{p} \sup _{\operatorname{Lip}(f) \leqslant 1}\|f-\check{p} * f\|_{\infty} \quad(\check{p}(x)=p(-x)) \\
& \geqslant \sup _{\operatorname{Lip}(f) \leqslant 1} \min _{p}\|f-p\|_{\infty}
\end{aligned}
$$

\rightarrow worst-case error for best polynomial approximation of Lipschitz functions
■ Generalization of a univariate argument of [Fisher, 1977] to the multivariate case

Sharpness

- For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With $x \in \mathbb{T}$ we have $\mathcal{W}_{1}\left(p^{*}, \delta_{x}\right)=\frac{1}{4}(n+1)^{-1}$.

- Proof involves the relation

$$
\mathcal{W}_{1}(\mu, \nu)=\left\|\mathcal{B}_{1} * \mu-\mathcal{B}_{1} * \nu\right\|_{L^{1}}, \quad \text { where } \quad \mathcal{B}_{1}: t \in \mathbb{T} \mapsto \frac{1}{2}-t
$$

(Periodic analog of the cumulative distribution formulation of \mathcal{W}_{1} on \mathbb{R})

- Transfer (by deconvolution) results on unicity of best L^{1}-approximation to unicity of our best polynomial approximation in some cases (e.g. μ a.c., or $\mu=\delta_{x}$)

Polynomial Interpolation

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in\{-n, \ldots, n\}^{d}$, we define the moment matrix

$$
T_{n} \stackrel{\text { def. }}{=}[\hat{\mu}(k-l)]_{k, l \in\{0, \ldots, n\}^{d}}
$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in\{-n, \ldots, n\}^{d}$, we define the moment matrix

$$
T_{n} \stackrel{\text { def. }}{=}[\hat{\mu}(k-l)]_{k, l \in\{0, \ldots, n\}^{d}}
$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

■ If $\mu=\sum_{j=1}^{r} \lambda_{j} \delta_{x_{j}}, T_{n}$ admits the Vandermonde decomposition

$$
T_{n}=A \wedge A^{*}
$$

where $A=\left[e^{-2 i \pi\left\langle k, x_{j}\right\rangle}\right]_{k \in\{0, \ldots, n\}^{d}, j \in \llbracket 1, r \rrbracket}$ and $\Lambda=\operatorname{Diag}(\lambda)$.

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in\{-n, \ldots, n\}^{d}$, we define the moment matrix

$$
T_{n} \stackrel{\text { def. }}{=}[\hat{\mu}(k-l)]_{k, l \in\{0, \ldots, n\}^{d}} .
$$

■ central in parametric approaches (Prony, ESPRIT, MUSIC, ...)

- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

■ If $\mu=\sum_{j=1}^{r} \lambda_{j} \delta_{x_{j}}, T_{n}$ admits the Vandermonde decomposition

$$
T_{n}=A \wedge A^{*}
$$

where $A=\left[e^{-2 i \pi\left\langle k, x_{j}\right\rangle}\right]_{k \in\{0, \ldots, n\}^{d}, j \in \llbracket 1, r \rrbracket}$ and $\Lambda=\operatorname{Diag}(\lambda)$.
■ No such decomposition in general \rightarrow rank-revealing SVD provides useful tools

$$
T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}
$$

Interpolating Polynomial

- The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{(n+1)^{d}} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=F_{n} * \mu=(n+1)^{-d} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}$. Note that $0 \leqslant p_{1, n} \leqslant 1$.

Interpolating Polynomial

■ The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{(n+1)^{d}} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=F_{n} * \mu=(n+1)^{-d} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}$. Note that $0 \leqslant p_{1, n} \leqslant 1$.

■ Let $V \stackrel{\text { def. }}{=} \overline{\operatorname{Supp}} \mu^{Z}$ be the smallest algebraic set containing Supp μ Let $\mathcal{V}\left(\operatorname{Ker} T_{n}\right)$ be the set of common roots of all polynomials in $\operatorname{Ker} T_{n}$.

Theorem (Interpolation). If $\mathcal{V}\left(\operatorname{Ker} T_{n}\right)=V$, then $p_{1, n}(x)=1$ iff $x \in V$.
$\rightarrow \mathcal{V}\left(\operatorname{Ker} T_{n}\right)=V$ always holds for sufficiently large n if μ is discrete [Kunis et al., 2016],[Sauer, 2017] or nonnegative [Wageringel, 2022]

Pointwise convergence

- We assume that $V \neq \mathbb{T}^{d}$

Theorem. Let $y \in \mathbb{T}^{d} \backslash V$, and let g be a polynomial of max-degree m such that $g(y) \neq 0$ and g vanishes on Supp μ. Then, for all $n \geqslant m$,

$$
p_{1, n+m}(y) \leqslant \frac{\|g\|_{L^{2}}^{2}}{|g(y)|} \frac{m(4 m+2)^{d}}{n+1}+\frac{d m}{n+m+1}
$$

- In combination with the interpolation property, this proves pointwise convergence to the characteristic function of the support, with rate $O\left(n^{-1}\right)$.

The Discrete Case

- If $\mu=\sum_{j=1}^{r} \lambda_{j} \delta_{x_{j}}$, stronger results are derived with the help of the Vandermonde decomposition of T_{n}

Theorem (Pointwise convergence). Let $x \neq x_{j}$ for all j. If $n+1>\frac{4 d}{\min _{j \neq 1}\left\|x_{j}-x_{l}\right\| \infty}$, then

$$
p_{1, n}(x) \leqslant \frac{1}{3(n+1)^{2}} \frac{\lambda_{\max }}{\lambda_{\min }} \sum \frac{1}{\left\|x-x_{j}\right\|_{\infty}^{2}}
$$

Theorem (Weak* convergence). We have

$$
\frac{p_{1, n}}{\left\|p_{1, n}\right\|_{L^{1}}} \rightharpoonup \frac{1}{r} \sum_{j=1}^{r} \delta_{x_{j}}
$$

Numerical Illustrations

Numerical Illustrations

- We consider three synthetic examples
- discrete, $\quad r=15$ points,
- algebraic curve,
- circle,

$$
r=3000 \text { points, }
$$

$$
r=3000 \text { points, } \quad \lambda \text { uniform }
$$

moments analytical numerical integration analytical

■ We compute the semidiscrete optimal transport between the discretized approximation μ^{r} and the density p_{n}

Conclusion

Conclusion

Summary.

New insights on Wasserstein-1 approximation of measures
Computationally efficient polynomial approximations
Pointwise convergence towards the characteristic function of the support

Outlook.

Extension to the noisy regime
Connection with Christoffel functions
Preprint available: arXiv.2203.10531

Thank you for your attention!

References

Candès, E.J. and C. Fernandez-Granda (2014). "Towards a Mathematical Theory of Super-Resolution". In: Comm. Pure Appl. Math. 67.6, pp. 906-956.
Castro, Y. de et al. (2017). "Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions". In: IEEE Trans. Inform. Theory 63.1, pp. 621-630.
Fisher, Stephen D. (1977). "Best Approximation by Polynomials". In: J. Approx. Th. 21.1, pp. 43-59.
Hua, Y. and T.K. Sarkar (1989). "Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response". In: IEEE Trans. Antennas Propagation 37.2.
Kunis, S. et al. (2016). "A Multivariate Generalization of Prony's Method". In: Linear Algebra Appl. 490, pp. 31-47.
Mhaskar, H. N. (2019). "Super-Resolution Meets Machine Learning: Approximation of Measures". In: J. Fourier Anal. Appl. 25.6, pp. 3104-3122.
Ongie, G. and M. Jacob (2016). "Off-the-grid recovery of piecewise constant images from few Fourier samples". In: SIAM J. Imaging Sci. 9.3, pp. 1004-1041.
Pan, H., T. Blu, and P.L. Dragotti (2014). "Sampling Curves With Finite Rate of Innovation". In: IEEE Trans. Signal Process. 62.2, pp. 458-471.
Pauwels, E., M. Putinar, and J.B. Lasserre (2020). "Data Analysis From Empirical Moments and the Christoffel Function". In: F. Comp. Math.
Polisano, K. et al. (2017). "A convex approach to super-resolution and regularization of lines in images". In: URL: https://hal.archives-ouvertes.fr/hal-01599010.

Poon, C. and G. Peyré (2018). "Multi-dimensional Sparse Super-Resolution". In: SIAM J. Math. Anal. 51.1, pp. 1-44.
R. de Prony, G. (1795). "Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques et sur celles de la Force Expansive de la Vapeur de l'Eau et de la Vapeur de l'Alkool, à différentes températures". In: Journal de l'École Polytechnique Floréal et Plairial 1.cahier 22, pp. 24-76.
Roy, R. and T. Kailath (1989). "ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques". In: IEEE Trans. Acoustics Speech Signal Process. 37.7, pp. 984-995.
Santambrogio, F. (2015). "Optimal transport for Applied Mathematicians". In: Birkäuser, NY 55.58-63, p. 94.

Sauer, T. (2017). "Prony's Method in Several Variables". In: Numer. Math. 136, pp. 411-438.
Schmidt, R. (1986). "Multiple Emitter Location and Signal Parameter Estimation". In: IEEE Trans. Antennas Propagation 34.3, pp. 276-280.
Wageringel, M. (2022). "Truncated moment problems on positive-dimensional algebraic varieties".

