

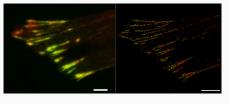
Trigonometric Approximations of Singular Measures

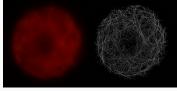
Paul Catala. Joint work with M. Hockmann, S. Kunis and M. Wageringel University of Osnabrück.

MAIA 2022, Reinhardswaldschule, 26.09 - 30.09

Motivation

Super-resolution. Estimate a signal from a few coarse linear measurements





source - www.cellimagelibrary.org

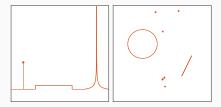
- Ubiquitous problem in imaging and data science (low-pass filtering)
 - Fluorescence microscopy
 - Astronomical imaging
 - Mixture estimation
- \blacksquare Signals of interest are often structured: pointwise sources, curves, surfaces...

Data model

■ Radon measures

$$d\in\mathbb{N}\setminus\{0\}$$
, $\mathbb{T}\stackrel{ ext{def.}}{=}\mathbb{R}/\mathbb{Z}$ Torus,

$$\mu \in \mathcal{M}(\mathbb{T}^d)$$



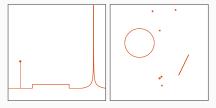
Singular measures μ

Data model

■ Radon measures

$$d\in\mathbb{N}\setminus\{0\}$$
, $\mathbb{T}\stackrel{ ext{def.}}{=}\mathbb{R}/\mathbb{Z}$ Torus,

$$\mu \in \mathcal{M}(\mathbb{T}^d)$$

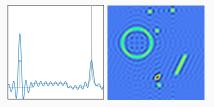


Singular measures μ

■ Trigonometric moments

$$k \in \Omega \subset \mathbb{Z}^d$$
, typically $\Omega = \{-n, \dots, n\}^d$

$$\hat{\mu}(k) \stackrel{\text{def.}}{=} \int_{\mathbb{T}^d} e^{-2\imath \pi \langle k, x \rangle} \mathrm{d}\mu(x)$$



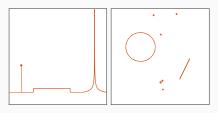
Fourier partial sum $S_n\mu$ (n=20)

Data model

■ Radon measures

$$d\in\mathbb{N}\setminus\{0\}$$
, $\mathbb{T}\stackrel{ ext{def.}}{=}\mathbb{R}/\mathbb{Z}$ Torus,

$$\mu \in \mathcal{M}(\mathbb{T}^d)$$

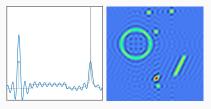


Singular measures μ

■ Trigonometric moments

$$k \in \Omega \subset \mathbb{Z}^d$$
, typically $\Omega = \{-n, \dots, n\}^d$

$$\hat{\mu}(k) \stackrel{\text{def.}}{=} \int_{\mathbb{T}^d} e^{-2\imath \pi \langle k, x \rangle} d\mu(x)$$

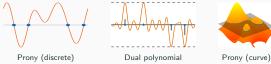


Fourier partial sum $S_n\mu$ (n = 20)

How can we recover μ from $\{\hat{\mu}(k)\}$, $k \in \{-n, \dots, n\}^d$?

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

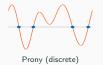


- For general measures,
 - FRI approaches [Pan, Blu, and Dragotti, 2014]
 - Super-resolution of lines [Polisano et al., 2017]

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

- For general measures,
 - FRI approaches [Pan, Blu, and Dragotti, 2014]
 - Super-resolution of lines [Polisano et al., 2017]
 - Polynomial approximations [Mhaskar, 2019]
 - Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]



- For general measures,
 - FRI approaches [Pan, Blu, and Dragotti, 2014]
 - Super-resolution of lines [Polisano et al., 2017]
 - Polynomial approximations [Mhaskar, 2019]
 - Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

■ In this work:

- easily computable polynomial approximations, with sharp rates in W_1 metric (similarities with [Mhaskar, 2019], use of different distance between measures)
- easily computable polynomial interpolant for algebraic varieties

Overview

- $1. \ \, \hbox{Polynomial Approximations in Wasserstein-} 1$
- 2. Polynomial Interpolation
- 3. Numerical illustrations
- 4. Conclusion

Polynomial Approximations

Wasserstein-1 distance

- We need a distance between measures
- Examples include f-divergences, MMD, and Wasserstein distances
- Wasserstein distances metrize the weak* topology (on compact sets) [Santambrogio, 2015], *i.e.*

$$\left(\forall \varphi \in \mathscr{C}(\mathbb{T}^d), \ \int \varphi d\mu_n \to \int \varphi d\mu\right) \iff \mathcal{W}_p(\mu_n, \mu) \to 0$$

■ Wasserstein-1 further admits the dual formulation

$$\mathcal{W}_1(\mu, \nu) = \sup_{f \in \mathscr{C}(\mathbb{T}^d), \mathsf{Lip}(f) \leqslant 1} \int f d(\mu - \nu)$$

- ightarrow requires no positivity, only $\mu(\mathbb{T}^d)=
 u(\mathbb{T}^d)$
- $\rightarrow \operatorname{Lip}(f) \leqslant 1 \operatorname{means} |f(x) f(y)| \leqslant \min_{k \in \mathbb{Z}^d} ||x y + k||_1, \forall x, y$

Fejér approximation

■ The Fejér kernel F_n is defined by

$$F_n(x) \stackrel{\text{def.}}{=} \frac{1}{(n+1)^d} \prod_{i=1}^d \frac{\sin^2((n+1)\pi x_i)}{\sin^2(\pi x_i)}$$

- Consider the polynomial $p_n \stackrel{\text{def.}}{=} F_n * \mu$, i.e. $p_n(x) = \int F_n(y-x) d\mu(y)$
 - Computed using Fast Fourier Transforms:

$$p_n(x) = (n+1)^{-d} \sum \hat{\mu}(k-l)e^{-2i\pi(k-l)x}$$

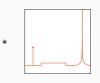
Fejér approximation

■ The Fejér kernel F_n is defined by

$$F_n(x) \stackrel{\text{\tiny def.}}{=} \frac{1}{(n+1)^d} \prod_{i=1}^d \frac{\sin^2\left((n+1)\pi x_i\right)}{\sin^2\left(\pi x_i\right)}$$

- Consider the polynomial $p_n \stackrel{\text{def.}}{=} F_n * \mu$, i.e. $p_n(x) = \int F_n(y-x) d\mu(y)$
 - Computed using Fast Fourier Transforms:

$$p_n(x) = (n+1)^{-d} \sum \hat{\mu}(k-l)e^{-2i\pi(k-l)x}$$



Theorem (Weak* convergence). Assuming (only) that μ has finite total variation, we have that $p_n \rightharpoonup \mu$. More precisely,

$$\frac{d}{\pi^2}\left(\frac{\log(n+2)}{n+1}+\frac{3}{n}\right)\leqslant \mathcal{W}_1(\rho_n,\mu)\leqslant \frac{d}{\pi^2}\frac{\log(n+1)+3}{n}$$

Saturation

 \blacksquare Further assumptions on μ do not improve so much this bound.

Theorem (Saturation). For every measure $\mu \in \mathcal{M}(\mathbb{T}^d)$ not being the Lebesgue measure, there exists a constant c such that

$$W_1(p_n,\mu)\geqslant \frac{c}{n+1}$$

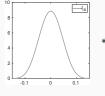
■ For instance $d\mu/dx = 1 + \cos(2\pi x) := w(x)$ yields $\mathcal{W}_1(p_n, w) \geqslant (4\pi)^{-1}(n+1)^{-1}$

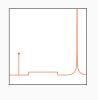
Jackson approximation

■ The Jackson kernel J_n is defined by

$$J_{2m}(x) \stackrel{\text{def.}}{=} \frac{3}{m(2m^2+1)} \prod_{i=1}^d \frac{\sin^4((m+1)\pi x_i)}{\sin^4(\pi x_i)}$$

- Consider the polynomial $q_n \stackrel{\text{def.}}{=} J_n * \mu$
 - Computed with Fast Fourier Transforms



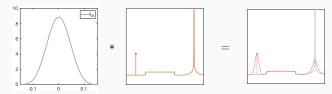


Jackson approximation

■ The Jackson kernel J_n is defined by

$$J_{2m}(x) \stackrel{ ext{def.}}{=} rac{3}{m(2m^2+1)} \prod_{i=1}^d rac{\sin^4((m+1)\pi x_i)}{\sin^4(\pi x_i)}$$

- Consider the polynomial $q_n \stackrel{\text{def.}}{=} J_n * \mu$
 - Computed with Fast Fourier Transforms



Theorem. (Weak* convergence) Assuming that μ has finite total variation, we have that $q_n \rightharpoonup \mu$. More precisely,

$$W_1(q_n,\mu) \leqslant \frac{3}{2} \frac{d}{n+2}$$

Best Polynomial Approximation

■ Assume μ is of finite total variation, $\|\mu\|_{TV} = 1$

Theorem. (Worst-case bound) For every $d,n\in\mathbb{N}$, for every $\mu\in\mathcal{M}(\mathbb{T}^d)$, there exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it holds that

$$\sup_{\mu \in \mathcal{M}} \min_{\deg(p) \leqslant n} \mathcal{W}_1(p,\mu) \geqslant \frac{1}{4(n+1)}.$$

Sketch of proof:

■ Best approximation in the worst-case:

$$\begin{split} \sup_{\mu} \min_{p} \mathcal{W}_{1}(p,\mu) \geqslant \min_{p} \mathcal{W}_{1}(p,\delta_{0}) \\ &= \min_{p} \sup_{\text{Lip}(f) \leqslant 1} \|f - \check{p} * f\|_{\infty} \qquad (\check{p}(x) = p(-x)) \\ \geqslant \sup_{\text{Lip}(f) \leqslant 1} \min_{p} \|f - p\|_{\infty} \end{split}$$

- → worst-case error for best polynomial approximation of Lipschitz functions
- Generalization of a univariate argument of [Fisher, 1977] to the multivariate case

Sharpness

■ For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With
$$x \in \mathbb{T}$$
 we have $\mathcal{W}_1(p^*, \delta_x) = \frac{1}{4}(n+1)^{-1}$.

- Proof involves the relation

$$\mathcal{W}_1(\mu,\nu) = \|\mathcal{B}_1 * \mu - \mathcal{B}_1 * \nu\|_{\mathsf{L}^1}, \quad \text{where} \quad \mathcal{B}_1 : t \in \mathbb{T} \mapsto \frac{1}{2} - t$$

(Periodic analog of the cumulative distribution formulation of \mathcal{W}_1 on \mathbb{R})

- Transfer (by deconvolution) results on unicity of best L¹-approximation to unicity of our best polynomial approximation in some cases (e.g. μ a.c., or $\mu = \delta_x$)

Polynomial Interpolation

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}$, $k\in\{-n,\ldots,n\}^d$, we define the moment matrix

$$T_n \stackrel{\text{def.}}{=} \left[\hat{\mu}(k-I) \right]_{k,l \in \{0,\ldots,n\}^d}.$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}$, $k \in \{-n, ..., n\}^d$, we define the moment matrix

$$\mathcal{T}_n \stackrel{\text{def.}}{=} \left[\hat{\mu}(k-I) \right]_{k,l \in \{0,\dots,n\}^d}.$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]
- If $\mu = \sum_{j=1}^{r} \lambda_j \delta_{x_j}$, T_n admits the Vandermonde decomposition

$$T_n = A\Lambda A^*$$

where
$$A = \left[e^{-2i\pi\langle k, x_j\rangle}\right]_{k\in\{0,\dots,n\}^d,\,j\in[\![1,r]\!]}$$
 and $\Lambda = \mathsf{Diag}(\lambda)$.

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}$, $k \in \{-n, ..., n\}^d$, we define the moment matrix

$$T_n \stackrel{\text{def.}}{=} \left[\hat{\mu}(k-l) \right]_{k,l \in \{0,\ldots,n\}^d}.$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]
- If $\mu = \sum_{j=1}^{r} \lambda_j \delta_{x_j}$, T_n admits the Vandermonde decomposition

$$T_n = A\Lambda A^*$$

where
$$A = \left[\mathrm{e}^{-2i\pi\langle k, x_j \rangle}\right]_{k \in \{0, \dots, n\}^d, \, j \in [\![1, r]\!]}$$
 and $\Lambda = \mathrm{Diag}(\lambda)$.

lacksquare No such decomposition in general o rank-revealing SVD provides useful tools

$$T_n = \sum_{j=1}^r \sigma_j u_j^{(n)} v_j^{(n)*}$$

Interpolating Polynomial

■ The singular value decomposition: $T_n = \sum_{i=1}^r \sigma_i u_i^{(n)} v_i^{(n)*}$ allows to define

$$p_{1,n}(x) = \frac{1}{(n+1)^d} \sum_{j=1}^r |u_j^{(n)}(x)|^2$$

 \rightarrow unweighted counterpart of $p_n = F_n * \mu = (n+1)^{-d} \sum \sigma_j u_j^{(n)}(x) v_j^{(n)}(x)^*$. Note that $0 \leqslant p_{1,n} \leqslant 1$.

Interpolating Polynomial

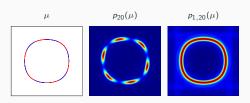
■ The singular value decomposition: $T_n = \sum_{j=1}^r \sigma_j u_j^{(n)} v_j^{(n)*}$ allows to define

$$p_{1,n}(x) = \frac{1}{(n+1)^d} \sum_{j=1}^r |u_j^{(n)}(x)|^2$$

- \rightarrow unweighted counterpart of $p_n = F_n * \mu = (n+1)^{-d} \sum \sigma_j u_j^{(n)}(x) v_j^{(n)}(x)^*$. Note that $0 \le p_{1,n} \le 1$.
- Let $V \stackrel{\text{def.}}{=} \overline{\text{Supp }\mu}^Z$ be the smallest algebraic set containing Supp μ Let $\mathcal{V}(\text{Ker }T_n)$ be the set of common roots of all polynomials in Ker T_n .

Theorem (Interpolation). If
$$\mathcal{V}(\text{Ker }T_n)=V$$
, then $p_{1,n}(x)=1$ iff $x\in V$.

 $\rightarrow \mathcal{V}(\text{Ker } T_n) = V$ always holds for sufficiently large n if μ is discrete [Kunis et al., 2016], [Sauer, 2017] or nonnegative [Wageringel, 2022]



Pointwise convergence

lacksquare We assume that $V
eq \mathbb{T}^d$

Theorem. Let $y\in\mathbb{T}^d\setminus V$, and let g be a polynomial of max-degree m such that $g(y)\neq 0$ and g vanishes on Supp μ . Then, for all $n\geqslant m$,

$$p_{1,n+m}(y) \leqslant \frac{\|g\|_{L^2}^2}{|g(y)|} \frac{m(4m+2)^d}{n+1} + \frac{dm}{n+m+1}$$

■ In combination with the interpolation property, this proves pointwise convergence to the characteristic function of the support, with rate $O(n^{-1})$.

The Discrete Case

■ If $\mu = \sum_{j=1}^r \lambda_j \delta_{x_j}$, stronger results are derived with the help of the Vandermonde decomposition of T_n

Theorem (Pointwise convergence). Let $x \neq x_j$ for all j. If $n+1 > \frac{4d}{\min_{j \neq l} \|x_j - x_l\|_{\infty}}$, then

$$p_{1,n}(x) \leqslant \frac{1}{3(n+1)^2} \frac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}} \sum \frac{1}{\|x - x_j\|_{\infty}^2}$$

Theorem (Weak* convergence). We have

$$\frac{p_{1,n}}{\|p_{1,n}\|_{\mathsf{L}^1}} \rightharpoonup \frac{1}{r} \sum_{j=1}^r \delta_{x_j}$$

Numerical Illustrations

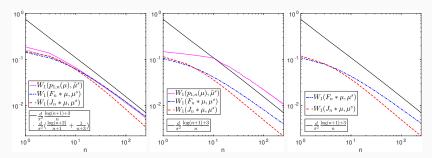
Numerical Illustrations

■ We consider three synthetic examples

- discrete, r=15 points, λ random moments analytical - algebraic curve, r=3000 points, λ uniform numerical integration

- circle, r = 3000 points, λ uniform analytical

■ We compute the semidiscrete optimal transport between the discretized approximation μ^r and the density p_n



Conclusion

Conclusion

Summary.

New insights on Wasserstein-1 approximation of measures

Computationally efficient polynomial approximations

Pointwise convergence towards the characteristic function of the support

Outlook.

Extension to the noisy regime

Connection with Christoffel functions

Preprint available: arXiv.2203.10531

Thank you for your attention!

References

- Castro, Y. de et al. (2017). "Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions". In: IEEE Trans. Inform. Theory 63.1, pp. 621–630.
- Fisher, Stephen D. (1977). "Best Approximation by Polynomials". In: *J. Approx. Th.* 21.1, pp. 43–59.
- Hua, Y. and T.K. Sarkar (1989). "Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response". In: *IEEE Trans. Antennas Propagation* 37.2.
 - Kunis, S. et al. (2016). "A Multivariate Generalization of Prony's Method". In: *Linear Algebra Appl.* 490, pp. 31–47.
 - Mhaskar, H. N. (2019). "Super-Resolution Meets Machine Learning: Approximation of Measures". In: *J. Fourier Anal. Appl.* 25.6, pp. 3104–3122.
 - Ongie, G. and M. Jacob (2016). "Off-the-grid recovery of piecewise constant images from few Fourier samples". In: *SIAM J. Imaging Sci.* 9.3, pp. 1004–1041.
- Pan, H., T. Blu, and P.L. Dragotti (2014). "Sampling Curves With Finite Rate of Innovation". In: *IEEE Trans. Signal Process.* 62.2, pp. 458–471.
- Pauwels, E., M. Putinar, and J.B. Lasserre (2020). "Data Analysis From Empirical Moments and the Christoffel Function". In: F. Comp. Math.
 - Polisano, K. et al. (2017). "A convex approach to super-resolution and regularization of lines in images". In: url: https://hal.archives-ouvertes.fr/hal-01599010.

- R. de Prony, G. (1795). "Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques et sur celles de la Force Expansive de la Vapeur de l'Eau et de la Vapeur de l'Alkool, à différentes températures". In: Journal de l'École Polytechnique Floréal et Plairial 1.cahier 22, pp. 24–76.
- Roy, R. and T. Kailath (1989). "ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques". In: *IEEE Trans. Acoustics Speech Signal Process.* 37.7, pp. 984–995.
- Santambrogio, F. (2015). "Optimal transport for Applied Mathematicians". In: *Birkäuser, NY* 55.58-63, p. 94.
- Sauer, T. (2017). "Prony's Method in Several Variables". In: Numer. Math. 136, pp. 411–438.
 Schmidt, R. (1986). "Multiple Emitter Location and Signal Parameter Estimation". In: IEEE Trans. Antennas Propagation 34.3, pp. 276–280.
 - Wageringel, M. (2022). "Truncated moment problems on positive-dimensional algebraic varieties".