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Sparse Super-Resolution

� Problem: Recover a signal from a few coarse linear measurements

Image Processing: Fluorescence microcospy (source - www.cellimagelibrary.org), astronomical imaging, . . .

Machine Learning: Mixture estimation, optimal transport, . . .

� Signals of interest are often structured: pointwise sources, curves, graphs of

functions, surfaces...
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Data Model

� Radon measures

d ∈ N \ {0}, T def.
= R/Z (Torus),

µ ∈M(Td )

∫

Singular measures µ

� Topological dual of C (Td )

� Trigonometric moments

k ∈ Ω ⊂ Zd , here Zd
n = {−n, . . . , n}d

µ̂(k)
def.
=

∫
Td

e−2ıπ〈k, x〉dµ(x)

Fourier partial sum Snµ (n = 13)

?
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A Short Tour of Recovery Approaches

Prony

BLASSO (Dual) FRI Christoffel

� Discrete

- Prony’s method

∗

[R. de Prony, 1795], and subspace methods:

ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986],

matrix pencils [Hua and Sarkar, 1989], ...

- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

� Specific structures

- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]

- Super-resolution of lines [Polisano et al., 2017]

� More general

- Polynomial approximations

∗

[Mhaskar, 2019]

- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

�
∗ In this presentation

- empirically good generalization of Prony’s method in the non-discrete case

- polynomial approximations and interpolations, with rates in p-Wasserstein metric
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Moment Matrix

For µ ∈M(Td ) and n ∈ N, we define the moment matrix of µ of order n by

Tn
def.
=
(
µ̂(k − l)

)
k,l∈Nd

n

where Nd
n

def.
=
{
k ∈ Nd ; ||k||∞ 6 n

}
.

Remark

- Tn ∈ CN×N with N
def.
= (n + 1)d .

- Tn is multi-level Toeplitz: Tk+s,l = Tk,l−s , for all k, s, l ∈ Zd

- for instance with d = 1

Tn =


µ̂(0) µ̂(−1) µ̂(−2) . . .

µ̂(1) µ̂(0) µ̂(1) . . .

µ̂(2) µ̂(1) µ̂(0) . . .
...

...
...

. . .
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Overview

1. An Extension of Prony’s Method

2. Polynomial Approximations

3. Polynomial Interpolation

4. Conclusion
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An Extension of Prony’s Method



Discrete Recovery

Algorithm 1: Multivariate recovery for flat data

Input: Tn SDP, Toeplitz, flat matrix

Output: x1, . . . , xr ∈ Td

1 for i = 1 to d do

2 Compute shifted matrix T
(i)
n−1

3 Compute svd Tn−1 = UΣU∗

4 Compute multiplication matrices Xi = Σ−1U∗T
(i)
n−1U

5 end

6 Compute joint diagonalization basis P
∗Diagonalize Xα =

∑
αiXi , for random αi ∈ [0, 1]

7 Return xj,i = − 1
2π

arg (P−1XiP)jj , j = 1, . . . , r , i = 1, . . . , d

∗ Lemma. If the Xi s are jointly diagonalizable, then with probability one Xα is

non-derogatory (i.e. all eigenspaces are of dimension 1), with eigenvalues

νj =
d∑

i=1

αie
2ıπxj,i , j = 1, . . . , s.

6



Non-Discrete Recovery

� If µ is not discrete, we essentially lose the flatness of Tn

� Guarantees of robustness in the non-flat case exist [Klep, Povh, and Volčič, 2018]

� What is the numerical perspective?

Algorithm 2: Multivariate recovery for flat data
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Diagonality Criterion

� Xi non-commuting, not jointly diagonalizable

→ find a basis in which they are ”almost” diagonal

� Off-diagonal criterion to minimize

O(P)
def.
=
∑
i

∑
α 6=β

(PXiP
−1)2

αβ

- criterion used e.g. in [Cardoso and Souloumiac, 1996],[Joho and Rahbar, 2002] for

blind source separation, but restricted to orthogonal matrices

- Xi are not Hermitian

- Riemannian optimization over GLr (C)

8



Quasi-Newton updates

� Invertibility is maintained using updates of the form Pt+1 = (Ir + E)Pt

� Taylor expansion: O((I + E)P) = O(T ) + 〈G(P), E〉+ 〈H(P)E, E〉+ o(||E||2)

- Relative gradient: with Y = Y − Diag(Y ) and Yi = PXiP
−1

G(P) =
∑
i

Y iY
∗
i − Y ∗i Y i

- Relative Hessian: use diagonal approximation [Ablin, Cardoso, and Gramfort, 2019].

When Yi are diagonal,

H̃pqrs(P) = δpr δqs
∑
i

|(Yi )pp − (Yi )qq |2

→ H̃ is sparse and positive semidefinite

� Quasi-Newton update: Pt+1 = (I + αEt)Pt , where α is found by linesearch and

Et = −(H̃(Pt) + βI )−1 · G(Pt)

9



Results

n = 5 n = 10 n = 20 (15 for sphere) 10



Polynomial Approximations



Wasserstein distances

� Distances between measures: f-divergences, discrepancies, Wasserstein distances, ...

Wp
p (µ, ν) = inf

{∫
d(x , y)pdπ(x , y) ; π ∈ Π(µ, ν)

}
[Kantorovich, 1942]

- set of couplings: Π(µ, ν)
def.
=
{
π ∈M+(Td × Td ) ; π(·,Td ) = µ, π(Td , ·) = ν

}
- d distance on Td : we use d(x , y) = ||x − y ||p,T

def.
= mink∈Zd ||x − y + k||p .

� Dual problem: W1 further admits the practical dual formulation

W1(µ, ν) = sup

{∫
f d(µ− ν) ; f ∈ Lip1

}
- requires only µ(Td ) = ν(Td ) (no positivity)

- Lip1
def.
=
{
f ∈ C (Td ) ; |f (x)− f (y)| 6 ||x − y ||1,T, ∀x , y ∈ Td

}
� Wp metrizes the weak* topology (on compact sets) [Santambrogio, 2015](

∀ϕ ∈ C (Td ),

∫
ϕdµn →

∫
ϕdµ

)
⇐⇒ Wp(µn, µ)→ 0

...
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Fejér approximation

� The Fejér kernel Fn is defined by

Fn(x)
def.
=

1

N

d∏
i=1

sin2 ((n + 1)πxi )

sin2 (πxi )

� For arbitrary µ, consider the polynomial

pn
def.
= Fn ∗ µ, i.e. pn(x) =

∫
Fn(y − x)dµ(y)

* =

- pn has a simple expression in terms of the moment matrix:

pn(x) = N−1vn(x)∗Tnvn(x), where vn(x) =
(
e2ıπ〈k, x〉

)
k∈Nd

n

- pn can be computed using Fast Fourier Transforms:

pn

(
j

M

)
= N−1

∑
k∈Zd

n

w(k)µ̂(k)e2ıπ〈 k
M
, j〉, where w(k) = F̂n(k) =

d∏
i=1

(1−
|ki |
n + 1

)

12



Convergence (Fejér)

Theorem (Weak-* convergence). Assuming (only) that µ has finite total variation,

we have that pn ⇀ µ. More precisely,
W1(pn, µ) 6

d

π2

log(n + 1) + 3

n

Wp(pn, µ) 6

(
2d

p − 1

)1/p 1

(n + 1)1/p
, p > 1

These bounds are tight in the worst case:
d

π2

(
log(n + 2)

n + 1
+

1

n + 3

)
6 sup
µ∈M(Td )

W1(pn, µ)

(
d

2π2(p − 1)

)1/p 1

4n1/p
6 sup
µ∈M(Td )

Wp(pn, µ), p > 1

First step of the proof:

Use the dual formulation of Wp to derive the relation

Wp(Fn ∗ µ, µ)p 6
∫

Fn(x)||x ||ppdx .

13



Saturation

� Further assumptions on µ do not improve so much this bound.

Theorem (Saturation). For every measure µ ∈ M(Td ) not being the Lebesgue

measure, there exists a constant c such that

W1(pn, µ) >
c

n + 1

� For instance dµ = (1 + cos(2πx))dx =: w(x)dx yields

W1(pn,w) >
1

4π(n + 1)

14



Powers of Fejér approximations

� We define the higher localized kernels

r =
⌈p

2
+ 1
⌉
, m =

⌊n
r

⌋
, Kn,p(x)

def.
= Cm,d

d∏
i=1

sin2r ((m + 1)πxi )

sin2r (πxi )
,

→ For instance, with p = 1, Kn,1(x) = 3
m(2m2+1)

sin4((m+1)πx

sin4(πx)
is the Jackson kernel

� Consider the polynomial

qn,p
def.
= Kn,p ∗ µ, i.e. qn,p(x) =

∫
Kn,p(x − y)dµ(y)

* =

- qn,p is of degree at most n

- qn,p can be computed with Fast Fourier Transforms

qn,p

(
j

M

)
= C−1

n

∑
k

K̂n,p(k)µ̂(k)e2ıπ〈 k
M
, j〉

15



Convergence

Theorem. (Weak* convergence) Assuming that µ has finite total variation, we have

that qn,p ⇀ µ. More precisely, there exists Cp independent of n such that

Wp(qn,p , µ) 6
Cp

n
.

This rate is sharp in the worst-case

d (1−p)/p

4(n + 1)
6 sup
µ∈M(Td )

Wp(qn,p , µ)

� In particular, with the Jackson kernel, we have for instance

W1(Kn,1 ∗ µ, µ) 6
3d

2(n + 2)
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Best Polynomial Approximation

Theorem (Worst-case bound). For every d , n ∈ N, for every µ ∈M(Td ) with finite

total variation, there exists a polynomial of best approximation in the Wasserstein-1

distance. Moreover

sup
µ∈M(Td )

min
deg(p)6n

Wp(p, µ) >
d (1−p)/p

4(n + 1)
.

Sketch of proof :

� Best approximation in the worst-case:

sup
µ

min
p
W1(p, µ) > min

p
W1(p, δ0)

= min
p

sup
Lip(f )61

||f − p̌ ∗ f ||∞ (p̌(x) = p(−x))

> sup
Lip(f )61

min
p
||f − p||∞

→ worst-case error for best polynomial approximation of Lipschitz functions

→ + generalization of a univariate argument of [Fisher, 1977] to the multivariate case

� Extend to Wp using Wp(µ, ν) > d/1−p)/pW1(µ, ν) from Jensen’s and Hölder’s inequality.

17



Sharpness

� For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With x ∈ T we have W1(p?, δx ) = 1
4

(n + 1)−1.

- Proof involves the relation

W1(µ, ν) = ||B1 ∗ µ− B1 ∗ ν||L1 , where B1 : t ∈ T 7→
1

2
− t

(Periodic analog of the cumulative distribution formulation of W1 on R)

- Transfer (by deconvolution) results on unicity of best L1-approximation to unicity of our

best polynomial approximation in some cases (e.g. µ a.c., or µ = δx )

� De La Vallée Poussin approximation [Mhaskar, 2019] also achieves optimal rate but

dependency with d is worse in the constant
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Numerical Verification

� Test on two measures:

- a discrete measure µd , s = 15

- a (discretized) algebraic curve µz , s = 3000

� Semidiscrete algorithm to compute the Wasserstein distance between polynomial density

and singular measure.

(x)W1-rates for Fejér (µd , µz )

10
0

10
1

10
2

n

10
-2

10
-1

(y) W2-rates for Fejér and Kn,1 (µz )

10
0

10
1

10
2

n

10
-2

10
-1

(z) W3-rates for Fejér and Kn,2 (µz )

19



Polynomial Interpolation



Interpolating Polynomial

� The singular value decomposition: Tn =
∑r

j=1 σju
(n)
j v

(n)∗
j allows to define

p1,n(x) =
1

N

r∑
j=1

|u(n)
j (x)|2

→ unweighted counterpart of pn = N−1e(x)∗Tne(x) = N−1
∑
σju

(n)
j (x)v

(n)
j (x)∗.

Note that 0 6 p1,n 6 1.

� Assume that Z
def.
= Suppµ is an algebraic variety (i.e. defined by polynomial equations)

Let V(Ker Tn) be the set of common roots of all polynomials in Ker Tn.

Theorem (Interpolation). If V(Ker Tn) = Z , then p1,n(x) = 1 iff x ∈ V .

→ V(Ker Tn) = Z always holds for sufficiently large n if µ is discrete [Kunis

et al., 2016],[Sauer, 2017] or nonnegative [Wageringel, 2022]

µ p20(µ) p1,20(µ)
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Pointwise convergence

� We assume that Z 6= Td

Theorem. Let y ∈ Td \ Z , and let g be a polynomial of max-degree m such that

g(y) 6= 0 and g vanishes on Z . Then, for all n > m,

p1,n+m(y) 6
||g ||2

L2

|g(y)|
m(4m + 2)d

n + 1
+

dm

n + m + 1

� In combination with the interpolation property, this proves pointwise convergence to the

characteristic function of the support, with rate O(n−1).
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The Discrete Case

� If µ =
∑r

j=1 λjδxj , stronger results are derived with the help of the Vandermonde

decomposition of Tn

Theorem (Pointwise convergence). Let x 6= xj for all j . If n + 1 > 4d
minj 6=l ||xj−xl ||∞

,

then

p1,n(x) 6
1

3(n + 1)2

λmax

λmin

∑ 1

||x − xj ||2∞

Theorem (Weak* convergence). Let p̃1,n
def.
= p1,n/||p1,n||L1 . We have

p̃1,n ⇀ µ̃
def.
=

1

r

r∑
j=1

δxj .

More specifically W1(p̃1,n, µ̃) = O(
log n

n
)

Wp(p̃1,n, µ̃) = O(n−1/p)
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Numerical Verification

10
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W{1,2,3}-rates for p̃1,n
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Conclusion



Conclusion

Summary.

� Two ”dual” approaches to the recovery of non-discrete measures from moments

� Dedicated solver for diagonalization is key in Prony’s method

� New insights on Wasserstein approximation of measures/support

� Computationally efficient polynomial approximations

Outlook.

� Extension to the noisy regime

� Connection with Christoffel functions

One preprint available: arXiv.2203.10531
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Thank you for your attention!
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Polytechnique Floréal et Plairial 1.cahier 22 (1795), pp. 24–76.

R. Roy and T. Kailath. “ESPRIT-Estimation of Signal Parameters via Rotational

Invariance Techniques”. In: IEEE Trans. Acoustics Speech Signal Process. 37.7

(1989), pp. 984–995.

25

https://hal.archives-ouvertes.fr/hal-01599010


F. Santambrogio. “Optimal transport for Applied Mathematicians”. In: Birkäuser,
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