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Motivation: Sparse Super-Resolution

Recover pointwise sources from low-resolution and noisy observations.

Astrophysics (2D) Molecule fluorescence (3D)

Also neural spikes (1D), seismic imaging (1.5D), ...
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Model
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Super-Resolution of Measures

Signal to recover: discrete positive
Radon measure on d-dimensional
torus Td

µ0 =
r∑

k=1

akδxk ∈M+(Td)

Linear Fourier measurements:

y = F(µ0) + w ∈ Cn

F(µ)
def.
=

(∫
Td

e−2iπ〈k, x〉dµ(x)

)
k∈Ωc

with Ωc
def.
= J−fc , fcKd .

⇐⇒ convolution with (ideal)
low-pass filter
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Off-The-Grid Recovery

Inverse problem: y = F(µ0) + w ∈ Cn

Grid-free regularization: total variation (TV) of measures

|µ|(Td) = sup

{∫
Td

ηdµ ; η ∈ C(Td) and ||η||∞ 6 1
}

|µ|(Td) = ||a||`1 |µ|(Td) = ||f ||L1

BLASSO (Azaïs et al. [2015])

min
µ∈M+(Td )

1
2
||y −F(µ)||2 + λ|µ|(Td) (Bλ)
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Multi-Task Off-the-Grid Recovery

Inverse problem: u = F(µ0) + w and v = F(ν0) + ε, µ0 ' ν0

regularization: TV + Wasserstein (Janati et al. [2018])

Wc(µ, ν) = min
γ∈M+(Td×Td )

{∫
Td×Td

cdγ ; π1γ = µ and π2γ = ν

}

Wasserstein-BLASSO

min
µ,ν∈M+(Td )

1
2
||u −F(µ)||2 + λµ(Td)+

1
2
||v −F(ν)||2 + λν(Td)+τWc(µ, ν)

(Pλ,τ )

Off-the-grid extension of Janati et al. [2018]
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Semidefinite Hierarchies
Lasserre [2001], Parrilo [2003], Dumitrescu [2017]
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Moment Matrices

Let Ω` = J0, `Kd , ` > fc , and m = (`+ 1)d .

Definition (Moment matrices) Given ν ∈ M+(Td), the moment matrix
of order ` of ν is the matrix R(ν) ∈ Cm×m such that

R(ν)k,l =

∫
Td

e−2iπ〈k−l , x〉dν(x) ∀k , l ∈ Ω`

Definition (Generalized Toeplitz matrices Tm) R ∈ Tm if for every multi-
indices j , k , l ∈ Ω` such that ||k + j ||∞ 6 ` and ||l + j ||∞ 6 `,

Rk+j ,l+j = Rk,l
def.
= zk−l

In this case, we write R = Toep(z)

• R(ν) ∈ Tm
• If ν > 0, R(ν) � 0
• If ν =

∑
aiδxi , R(ν) =

∑
aie(xi )e(xi )

∗, with e(x) = [e−2iπ〈k, x〉]k∈Ω`

8 / 20



Moment Matrices

Let Ω` = J0, `Kd , ` > fc , and m = (`+ 1)d .

Definition (Moment matrices) Given ν ∈ M+(Td), the moment matrix
of order ` of ν is the matrix R(ν) ∈ Cm×m such that

R(ν)k,l =

∫
Td

e−2iπ〈k−l , x〉dν(x) ∀k , l ∈ Ω`

Definition (Generalized Toeplitz matrices Tm) R ∈ Tm if for every multi-
indices j , k , l ∈ Ω` such that ||k + j ||∞ 6 ` and ||l + j ||∞ 6 `,

Rk+j ,l+j = Rk,l
def.
= zk−l

In this case, we write R = Toep(z)

• R(ν) ∈ Tm
• If ν > 0, R(ν) � 0
• If ν =

∑
aiδxi , R(ν) =

∑
aie(xi )e(xi )

∗, with e(x) = [e−2iπ〈k, x〉]k∈Ω`

8 / 20



Moment Matrices

Let Ω` = J0, `Kd , ` > fc , and m = (`+ 1)d .

Definition (Moment matrices) Given ν ∈ M+(Td), the moment matrix
of order ` of ν is the matrix R(ν) ∈ Cm×m such that

R(ν)k,l =

∫
Td

e−2iπ〈k−l , x〉dν(x) ∀k , l ∈ Ω`

Definition (Generalized Toeplitz matrices Tm) R ∈ Tm if for every multi-
indices j , k , l ∈ Ω` such that ||k + j ||∞ 6 ` and ||l + j ||∞ 6 `,

Rk+j ,l+j = Rk,l
def.
= zk−l

In this case, we write R = Toep(z)

• R(ν) ∈ Tm
• If ν > 0, R(ν) � 0
• If ν =

∑
aiδxi , R(ν) =

∑
aie(xi )e(xi )

∗, with e(x) = [e−2iπ〈k, x〉]k∈Ω`
8 / 20



Example: OT
Wc(µ, ν) = min

γ∈M+(Td×Td )

∫
cdγ s.t.

{
π1γ = µ

π2γ = ν

- assume cost is a trigonometric polynomial: c =
∑

k ĉke
−2iπ〈k, x〉

- Wc only involves trigonometric moments of γ (γ > 0)
- Replace measures by (infinite) moment sequences ...
- ... truncate these sequences ...
- ... they will satisfy (necessary) PSD constraints

«Change of variable:

z = F2(γ), i.e. z(s,t) =

∫
Td×Td

e−2iπ〈s, x〉e−2iπ〈t, y〉dγ(x , y)

z1 = F(π1γ) = z(·,0), and z2 = F(π2γ) = z(0,·) »

Moment relaxation at order ` (m = (`+ 1)d)

min
z∈C(2m−1)×(2m−1)

〈ĉ , z〉 s.t.


Toep(z) � 0
z1 = u
z2 = v

(OT (`))
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SDP hierarchy for Wasserstein-BLASSO

min
µ,ν∈M+(Td )

1
2
||u −F(µ)||2 + λµ(Td)+

1
2
||v −F(ν)||2 + λν(Td)+τWc(µ, ν)

m reformulation over product measures

min
γ∈M+(Td×Td )

1
2
||u −F(π1γ)||2+

1
2
||v −F(π2γ)||2+2λγ(Td × Td)+τ〈c, γ〉

⇓ semidefinite relaxation

Moment relaxation at order `

min
z∈C(2m−1)×(2m−1)

1
2
||u − z1||2 +

1
2
||v − z2||2 + 2λz0 + τ〈ĉ, z〉

s.t. Toep(z) � 0
(P(`)

λ,τ )
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Convergence of the hierarchy

Prop. For ` > fc , min (P(`)
λ,τ ) 6 min(P(`+1)

λ,τ ) 6 min (Pλ,τ ). Moreover,

lim`→∞min (P(`)
λ,τ ) = min (Pλ,τ )

Prop. (Collapsing) Let ` > fc . Then min (P(`)
λ,τ ) = min (Pλ,τ ) iff there

exist z solution to (P(`)
λ,τ ) and γ solution to (Pλ,τ ) st z = F2(γ) (z be

the moments of γ).

We know how to detect collapsing via flatness criterion (:= recurrence
relations between columns of Toep(z)) Curto and Fialkow [1996]
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Low-Rank Solutions to (P (`)
λ,τ )

Proposition
In the case of collapsing, (P(`)

λ,τ ) always admits a solution z such that

rank Toep(z) 6 r , r being the number of spikes in a solution of (P(`)
λ,τ ).

Proof.
Results from the fact that if γ =

∑r
i=1 aiδxi , then rankR(γ) 6 r .

⇒ efficient FFT-based Frank-Wolfe solver (C.,Duval,Peyré [2019])
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Support Recovery
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Sparse Recovery with Prony

Let R = R(γ) = Toep(z)

p ∈ KerR ⇒ p∗Rp = 0⇒
∫
Td

∣∣∣∑
k

pke
2iπ〈k, x〉

∣∣∣2dγ(x) = 0

⇒ Supp γ ⊂
{
x ∈ Td ; p(x) = 0

}
Let 〈KerR〉 def.

= ideal generated by KerR

Theorem (see e.g. Laurent [2010]) If the flatness criterion holds, then
Supp γ =

{
x ∈ Td ; p(x) = 0 ∀p ∈ 〈KerR〉

}
Solving system of polynomial equations ⇒ (multivariate) Prony’s method

Based on joint diagonalization (Harmouch et al. [2017], Josz et al. [2017])
- in 1-D, 〈KerR〉 = 〈p〉, root-finding ⇔ eigenvalues of companion matrix
- in d-D, joint diagonalization of (commuting) "multiplication matrices"
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Recovering non-atomic measures

Approximate joint diagonalization Christoffel polynomial
Pauwels and Lasserre [2019]

use optimization scheme to find use regularized inverse of
best co-diagonalization basis for moment matrix

multiplication matrices

return a discrete measure support ⊂ level sets
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Simulations
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Simulations

Wasserstein cost: sin2(x − y)

rec

rec

rec

rec

rec

rec

τ = 5

rec

rec

τ = 5.104

noiseless case, λ = 10−2 (top) and λ = 1 (bottom)
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Simulations

Multi observations penalization:
∑

kWc(µk , µb)
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Conclusion

- off-the-grid solver for the multi-task super-resolution problem
- using the Wasserstein penalization introduced by Janati et al. [2018]
- and Lasserre’s hierarchy

- Future lines of work:
- extension to unbalanced transport
- Lasserre’s hierarchy for curve recovery
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Thank You!
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