Trigonometric Approximations of the Sparse Super-Resolution Problem in Wasserstein Distances

Paul Catala, University of Osnabrück.

Joint work with M. Hockmann, S. Kunis and M. Wageringel
GAMM 2023, Dresden, 30.05.23-2.06.23

Sparse Super-Resolution

- Problem: Recover a signal from a few coarse linear measurements

Image Processing: Fluorescence microcospy (source - www.cellimagelibrary.org), astronomical imaging, . .

Machine Learning: Mixture estimation, optimal transport, ...

- Signals of interest are often structured: pointwise sources, curves, graphs of functions...

Data Model

- Radon measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ (Torus),

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

Data Model

- Radon measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ (Torus),

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

Singular measures μ

- Trigonometric moments
$k \in \Omega \subset \mathbb{Z}^{d}$, here $\mathbb{Z}_{n}^{d}=\{-n, \ldots, n\}^{d}$

$$
\hat{\mu}(k) \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} \mathrm{d} \mu(x)
$$

Fourier partial sum $S_{n} \mu(n=13)$

Data Model

- Radon measures
$d \in \mathbb{N} \backslash\{0\}, \mathbb{T} \stackrel{\text { def. }}{=} \mathbb{R} / \mathbb{Z}$ (Torus),

$$
\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)
$$

- Trigonometric moments
$k \in \Omega \subset \mathbb{Z}^{d}$, here $\mathbb{Z}_{n}^{d}=\{-n, \ldots, n\}^{d}$

$$
\hat{\mu}(k) \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} \mathrm{d} \mu(x)
$$

Singular measures μ

Fourier partial sum $S_{n} \mu(n=13)$

Recovery Approaches

Prony

BLASSO (Dual)

FRI

■ Discrete support: exact recovery

- Prony's method [R. de Prony, 1795], and subspace methods: ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989], ...
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]
- Structured support: exact recovery
- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]

Recovery Approaches

Prony

BLASSO (Dual)

FRI

Christoffel

■ Discrete support: exact recovery

- Prony's method [R. de Prony, 1795], and subspace methods: ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989], ...
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]
- Structured support: exact recovery
- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]

■ General case: asymptotic guarantees

- Polynomial approximations [Mhaskar, 2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

Recovery Approaches

Prony

BLASSO (Dual)

FRI

Christoffel

■ Discrete support: exact recovery

- Prony's method [R. de Prony, 1795], and subspace methods: ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989], ...
- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]
- Structured support: exact recovery
- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]

■ General case: asymptotic guarantees

- Polynomial approximations [Mhaskar, 2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]
- In this talk: polynomial approximations of

μ	via convolution	generic support	rates in $p-\mathcal{W}$ asserstein
İSupp μ	via SVD	algebraic support	rates in discrete case

Overview

1. Preliminaries
2. Polynomial Approximants
3. Polynomial Interpolants
4. Conclusion

Moment Matrix

For $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$ and $n \in \mathbb{N}$, we define the moment matrix of μ of order n by

$$
T_{n} \stackrel{\text { def. }}{=}(\hat{\mu}(k-l))_{k, l \in \mathbb{N}_{n}^{d}}
$$

where $\mathbb{N}_{n}^{d} \stackrel{\text { def. }}{=}\left\{k \in \mathbb{N}^{d} ;\|k\|_{\infty} \leqslant n\right\}$.

Remark

- $T_{n} \in \mathbb{C}^{N \times N}$ with $N \stackrel{\text { def. }}{=}(n+1)^{d}$.
- T_{n} is multi-level Toeplitz: $T_{k+s, l}=T_{k, l-s}$, for all $k, s, l \in \mathbb{Z}^{d}$
- for instance with $d=1$

$$
T_{n}=\left[\begin{array}{cccc}
\hat{\mu}(0) & \hat{\mu}(-1) & \hat{\mu}(-2) & \ldots \\
\hat{\mu}(1) & \hat{\mu}(0) & \hat{\mu}(1) & \ldots \\
\hat{\mu}(2) & \hat{\mu}(1) & \hat{\mu}(0) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Wasserstein distances

■ Distances between measures: f-divergences, discrepancies, Wasserstein distances, ...

$$
\mathcal{W}_{p}^{p}(\mu, \nu)=\inf \left\{\int d(x, y)^{p} \mathrm{~d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

- set of couplings: $\Pi(\mu, \nu) \stackrel{\text { def. }}{=}\left\{\pi \in \mathcal{M}_{+}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right) ; \pi\left(\cdot, \mathbb{T}^{d}\right)=\mu, \pi\left(\mathbb{T}^{d}, \cdot\right)=\nu\right\}$
- d distance on \mathbb{T}^{d} : we use $d(x, y)=\|x-y\|_{p, \mathbb{T}} \stackrel{\text { def. }}{=} \min _{k \in \mathbb{Z}^{d}}\|x-y+k\|_{p}$.

Wasserstein distances

- Distances between measures: f-divergences, discrepancies, Wasserstein distances, ...

$$
\mathcal{W}_{p}^{p}(\mu, \nu)=\inf \left\{\int d(x, y)^{p} \mathrm{~d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

- set of couplings: $\Pi(\mu, \nu) \stackrel{\text { def. }}{=}\left\{\pi \in \mathcal{M}_{+}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right) ; \pi\left(\cdot, \mathbb{T}^{d}\right)=\mu, \pi\left(\mathbb{T}^{d}, \cdot\right)=\nu\right\}$
- d distance on \mathbb{T}^{d} : we use $d(x, y)=\|x-y\|_{p, \mathbb{T}} \stackrel{\text { def. }}{=} \min _{k \in \mathbb{Z}^{d}}\|x-y+k\|_{p}$.
- Dual problem:

$$
\mathcal{W}_{p}(\mu, \nu)=\sup \left\{\int \varphi \mathrm{d} \mu+\int \psi \mathrm{d} \nu ; \varphi(x)+\psi(y) \leqslant\|x-y\|_{p, \mathbb{T}}^{p}\right\}
$$

- for $\mathcal{W}_{1}, \psi_{\star}=-\varphi_{\star}$ and the constraint reads $|\varphi(x)-\varphi(y)| \leqslant\|x-y\|_{1, \mathbb{T}}, \forall x, y \in \mathbb{T}^{d}$
- Distances between measures: f-divergences, discrepancies, Wasserstein distances, ...

$$
\mathcal{W}_{p}^{p}(\mu, \nu)=\inf \left\{\int d(x, y)^{p} \mathrm{~d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

- set of couplings: $\Pi(\mu, \nu) \stackrel{\text { def. }}{=}\left\{\pi \in \mathcal{M}_{+}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right) ; \pi\left(\cdot, \mathbb{T}^{d}\right)=\mu, \pi\left(\mathbb{T}^{d}, \cdot\right)=\nu\right\}$
- d distance on \mathbb{T}^{d} : we use $d(x, y)=\|x-y\|_{p, \mathbb{T}} \stackrel{\text { def }}{=} \min _{k \in \mathbb{Z}^{d}}\|x-y+k\|_{p}$.
- Dual problem:

$$
\mathcal{W}_{p}(\mu, \nu)=\sup \left\{\int \varphi \mathrm{d} \mu+\int \psi \mathrm{d} \nu ; \varphi(x)+\psi(y) \leqslant\|x-y\|_{p, \mathbb{T}}^{p}\right\}
$$

- for $\mathcal{W}_{1}, \psi_{\star}=-\varphi_{\star}$ and the constraint reads $|\varphi(x)-\varphi(y)| \leqslant\|x-y\|_{1, \mathbb{T}}, \forall x, y \in \mathbb{T}^{d}$
- \mathcal{W}_{p} metrizes the weak* topology (on compact sets)

$$
\left(\forall \varphi \in \mathscr{C}\left(\mathbb{T}^{d}\right), \int \varphi \mathrm{d} \mu_{n} \rightarrow \int \varphi \mathrm{~d} \mu\right) \Longleftrightarrow \mathcal{W}_{p}\left(\mu_{n}, \mu\right) \rightarrow 0
$$

Polynomial Approximants

Fejér approximation

- The Fejér kernel F_{n} is defined by

$$
F_{n}(x) \stackrel{\text { def. }}{=} \frac{1}{N} \prod_{i=1}^{d} \frac{\sin ^{2}\left((n+1) \pi x_{i}\right)}{\sin ^{2}\left(\pi x_{i}\right)}
$$

- For arbitrary μ, consider the polynomial

$$
p_{n} \stackrel{\text { def. }}{=} F_{n} * \mu, \quad \text { i.e. } \quad p_{n}(x)=\int F_{n}(y-x) \mathrm{d} \mu(y)
$$

Fejér approximation

- The Fejér kernel F_{n} is defined by

$$
F_{n}(x) \stackrel{\text { def. }}{=} \frac{1}{N} \prod_{i=1}^{d} \frac{\sin ^{2}\left((n+1) \pi x_{i}\right)}{\sin ^{2}\left(\pi x_{i}\right)}
$$

- For arbitrary μ, consider the polynomial

$$
p_{n} \stackrel{\text { def. }}{=} F_{n} * \mu, \quad \text { i.e. } \quad p_{n}(x)=\int F_{n}(y-x) \mathrm{d} \mu(y)
$$

- p_{n} has a simple expression in terms of the moment matrix:

$$
p_{n}(x)=N^{-1} V_{n}(x)^{*} T_{n} V_{n}(x), \quad \text { where } \quad v_{n}(x)=\left(e^{2 \imath \pi\langle k, x\rangle}\right)_{k \in \mathbb{N}_{n}^{d}}
$$

- pn can be computed using Fast Fourier Transforms:

$$
p_{n}\left(\frac{j}{M}\right)=N^{-1} \sum_{k \in \mathbb{Z}_{n}^{d}} w(k) \hat{\mu}(k) e^{2 \imath \pi\left\langle\frac{k}{m}, j\right\rangle}, \quad \text { where } \quad w(k)=\widehat{F}_{n}(k)=\prod_{i=1}^{d}\left(1-\frac{\left|k_{i}\right|}{n+1}\right)
$$

Convergence (Fejér)

Theorem (Weak-* convergence). Assuming (only) that μ has finite total variation, we have that $p_{n} \rightharpoonup \mu$. More precisely,

$$
\left\{\begin{array}{l}
\mathcal{W}_{1}\left(p_{n}, \mu\right) \leqslant \frac{d}{\pi^{2}} \frac{\log (n+1)+3}{n} \\
\mathcal{W}_{p}\left(p_{n}, \mu\right) \leqslant\left(\frac{2 d}{p-1}\right)^{1 / p} \frac{1}{(n+1)^{1 / p}}, \quad p>1
\end{array}\right.
$$

These bounds are tight in the worst case:

$$
\left\{\begin{aligned}
\frac{d}{\pi^{2}}\left(\frac{\log (n+2)}{n+1}+\frac{1}{n+3}\right) & \leqslant \sup _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \mathcal{W}_{1}\left(p_{n}, \mu\right) \\
\left(\frac{d}{2 \pi^{2}(p-1)}\right)^{1 / p} \frac{1}{4 n^{1 / p}} & \leqslant \sup _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \mathcal{W}_{p}\left(p_{n}, \mu\right), \quad p>1
\end{aligned}\right.
$$

First step of the proof:
Use the dual formulation of \mathcal{W}_{p} to derive the relation

$$
\mathcal{W}_{p}\left(F_{n} * \mu, \mu\right)^{p} \leqslant \int F_{n}(x)\|x\|_{p}^{p} \mathrm{~d} x .
$$

Saturation

- Further assumptions on μ do not improve so much this bound.

Theorem (Saturation). For every measure $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$ not being the Lebesgue measure, there exists a constant c such that

$$
\mathcal{W}_{1}\left(p_{n}, \mu\right) \geqslant \frac{c}{n+1}
$$

- For instance $\mathrm{d} \mu=(1+\cos (2 \pi x)) \mathrm{d} x=: w(x) \mathrm{d} x$ yields

$$
\mathcal{W}_{1}\left(p_{n}, w\right) \geqslant \frac{1}{4 \pi(n+1)}
$$

Powers of Fejér approximations

- We define the higher localized kernels

$$
r=\left\lceil\frac{p}{2}+1\right\rceil, \quad m=\left\lfloor\frac{n}{r}\right\rfloor, \quad K_{n, p}(x) \stackrel{\text { def. }}{=} C_{m, d} \prod_{i=1}^{d} \frac{\sin ^{2 r}\left((m+1) \pi x_{i}\right)}{\sin ^{2 r}\left(\pi x_{i}\right)}
$$

\rightarrow For instance, with $p=1, K_{n, 1}(x)=\frac{3}{m\left(2 m^{2}+1\right)} \frac{\sin ^{4}((m+1) \pi x}{\sin ^{4}(\pi x)}$ is the Jackson kernel

- Consider the polynomial

$$
q_{n, p} \stackrel{\text { def. }}{=} K_{n, p} * \mu, \quad \text { i.e. } \quad q_{n, p}(x)=\int K_{n, p}(x-y) \mathrm{d} \mu(y)
$$

$=$

- $q_{n, p}$ is of degree at most n
- $q_{n, p}$ can be computed with Fast Fourier Transforms

$$
a_{n, p}\left(\frac{j}{M}\right)=C_{n}^{-1} \sum_{k} \widehat{K_{n, p}}(k) \hat{\mu}(k) e^{2 \imath \pi\left\langle\frac{k}{M}, j\right\rangle}
$$

Convergence

Theorem. (Weak* convergence) Assuming that μ has finite total variation, we have that $q_{n, p} \rightharpoonup \mu$. More precisely, there exists C_{p} independent of n such that

$$
\mathcal{W}_{p}\left(q_{n, p}, \mu\right) \leqslant \frac{C_{p}}{n} .
$$

This rate is sharp in the worst-case

$$
\frac{d^{(1-p) / p}}{4(n+1)} \leqslant \sup _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \mathcal{W}_{p}\left(q_{n, p}, \mu\right)
$$

- In particular, with the Jackson kernel, we have for instance

$$
\mathcal{W}_{1}\left(K_{n, 1} * \mu, \mu\right) \leqslant \frac{3 d}{2(n+2)}
$$

Best Polynomial Approximation

Theorem (Worst-case bound). For every $d, n \in \mathbb{N}$, for every $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$ with finite total variation, there exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover

$$
\sup _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \min _{\operatorname{deg}(p) \leqslant n} \mathcal{W}_{p}(p, \mu) \geqslant \frac{d^{(1-p) / p}}{4(n+1)}
$$

Idea of proof
■ Dual $\mathcal{W}_{1} \longleftrightarrow$ worst-case error for best polynomial approximation of Lipschitz functions

- Extend to \mathcal{W}_{p} using $\mathcal{W}_{p}(\mu, \nu) \geqslant d^{(1-p) / p} \mathcal{W}_{1}(\mu, \nu)$ from Jensen's and Hölder's inequality

Sharpness for \mathcal{W}_{1}

- For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With $x \in \mathbb{T}$ we have $\mathcal{W}_{1}\left(p_{\star}, \delta_{x}\right)=\frac{1}{4}(n+1)^{-1}$.

Sharpness for \mathcal{W}_{1}

- For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With $x \in \mathbb{T}$ we have $\mathcal{W}_{1}\left(p_{\star}, \delta_{x}\right)=\frac{1}{4}(n+1)^{-1}$.

- Proof involves the relation

$$
\mathcal{W}_{1}(\mu, \nu)=\left\|\mathcal{B}_{1} * \mu-\mathcal{B}_{1} * \nu\right\|_{L^{1}}, \quad \text { where } \quad \mathcal{B}_{1}: t \in \mathbb{T} \mapsto \frac{1}{2}-t
$$

(Periodic analog of the cumulative distribution formulation of \mathcal{W}_{1} on \mathbb{R})

- Transfer (by deconvolution) results on unicity of best L¹-approximation to unicity of our best polynomial approximation in some cases (e.g. μ a.c., or $\mu=\delta_{x}$)

Sharpness for \mathcal{W}_{1}

- For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With $x \in \mathbb{T}$ we have $\mathcal{W}_{1}\left(p_{\star}, \delta_{x}\right)=\frac{1}{4}(n+1)^{-1}$.

- Proof involves the relation

$$
\mathcal{W}_{1}(\mu, \nu)=\left\|\mathcal{B}_{1} * \mu-\mathcal{B}_{1} * \nu\right\|_{L^{1}}, \quad \text { where } \quad \mathcal{B}_{1}: t \in \mathbb{T} \mapsto \frac{1}{2}-t
$$

(Periodic analog of the cumulative distribution formulation of \mathcal{W}_{1} on \mathbb{R})

- Transfer (by deconvolution) results on unicity of best L¹-approximation to unicity of our best polynomial approximation in some cases (e.g. μ a.c., or $\mu=\delta_{x}$)

■ De La Vallée Poussin approximation [Mhaskar, 2019] also achieves optimal rate but dependency with d is worse in the constant

Numerical Verification

- Test on two measures:
- a discrete measure $\mu_{d}, s=15$
- a (discretized) algebraic curve $\mu_{z}, s=3000$
- Semidiscrete algorithm to compute the Wasserstein distance between polynomial density and singular measure.

(m) \mathcal{W}_{1}-rates for Fejér $\left(\mu_{d}, \mu_{z}\right)$

(n) W_{2}-rates for Fejér and $K_{n, 1}\left(\mu_{z}\right)$

(o) W_{3}-rates for Fejér and $K_{n, 2}\left(\mu_{z}\right)$

Polynomial Interpolants

Interpolating Polynomial

- The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{N} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=N^{-1} e(x)^{*} T_{n} e(x)=N^{-1} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}$. We have $0 \leqslant p_{1, n} \leqslant 1$.

Interpolating Polynomial

- The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{N} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=N^{-1} e(x)^{*} T_{n} e(x)=N^{-1} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}$. We have $0 \leqslant p_{1, n} \leqslant 1$.

- Assume that $Z \stackrel{\text { def. }}{=}$ Supp μ is an algebraic variety (i.e. defined by polynomial equations) Let $\mathcal{V}\left(\operatorname{Ker} T_{n}\right)$ be the set of common roots of all polynomials in $\operatorname{Ker} T_{n}$.

Theorem (Interpolation). If $\mathcal{V}\left(\operatorname{Ker} T_{n}\right)=Z$, then $p_{1, n}(x)=1$ iff $x \in V$.

Interpolating Polynomial

- The singular value decomposition: $T_{n}=\sum_{j=1}^{r} \sigma_{j} u_{j}^{(n)} v_{j}^{(n) *}$ allows to define

$$
p_{1, n}(x)=\frac{1}{N} \sum_{j=1}^{r}\left|u_{j}^{(n)}(x)\right|^{2}
$$

\rightarrow unweighted counterpart of $p_{n}=N^{-1} e(x)^{*} T_{n} e(x)=N^{-1} \sum \sigma_{j} u_{j}^{(n)}(x) v_{j}^{(n)}(x)^{*}$. We have $0 \leqslant p_{1, n} \leqslant 1$.

- Assume that $Z \stackrel{\text { def. }}{=}$ Supp μ is an algebraic variety (i.e. defined by polynomial equations) Let $\mathcal{V}\left(\operatorname{Ker} T_{n}\right)$ be the set of common roots of all polynomials in $\operatorname{Ker} T_{n}$.

Theorem (Interpolation). If $\mathcal{V}\left(\operatorname{Ker} T_{n}\right)=Z$, then $p_{1, n}(x)=1$ iff $x \in V$.
$\rightarrow \mathcal{V}\left(\operatorname{Ker} T_{n}\right)=Z$ always holds for sufficiently large n if μ is discrete [Kunis et al., 2016],[Sauer, 2017] or nonnegative [Wageringel, 2022]

Pointwise convergence

- We assume that $Z \neq \mathbb{T}^{d}$

Theorem. Let $y \in \mathbb{T}^{d} \backslash Z$, and let g be a polynomial of max-degree m such that $g(y) \neq 0$ and g vanishes on z. Then, for all $n \geqslant m$,

$$
p_{1, n+m}(y) \leqslant \frac{\|g\|_{L^{2}}^{2}}{|g(y)|} \frac{m(4 m+2)^{d}}{n+1}+\frac{d m}{n+m+1}
$$

- In combination with the interpolation property, this proves pointwise convergence to the characteristic function of the support, with rate $O\left(n^{-1}\right)$.

The Discrete Case

■ If $\mu=\sum_{j=1}^{r} \lambda_{j} \delta_{x_{j}}$, stronger results are derived with the help of the Vandermonde decomposition of T_{n}

Theorem (Pointwise convergence). Let $x \neq x_{j}$ for all j. If $n+1>\frac{4 d}{\min _{j \neq l}\left\|x_{j}-x_{l}\right\| \infty}$, then

$$
p_{1, n}(x) \leqslant \frac{1}{3(n+1)^{2}} \frac{\lambda_{\max }}{\lambda_{\min }} \sum \frac{1}{\left\|x-x_{j}\right\|_{\infty}^{2}}
$$

Theorem (Weak* convergence). Let $\tilde{p}_{1, n} \stackrel{\text { def. }}{=} p_{1, n} /\left\|p_{1, n}\right\|_{L^{1}}$. We have

$$
\tilde{p}_{1, n} \rightharpoonup \tilde{\mu} \stackrel{\text { def. }}{=} \frac{1}{r} \sum_{j=1}^{r} \delta_{x_{j}}
$$

More specifically

$$
\left\{\begin{array}{l}
\mathcal{W}_{1}\left(\tilde{p}_{1, n}, \tilde{\mu}\right)=O\left(\frac{\log n}{n}\right) \\
\mathcal{W}_{p}\left(\tilde{p}_{1, n}, \tilde{\mu}\right)=O\left(n^{-1 / p}\right)
\end{array}\right.
$$

Numerical Verification

$$
\mathcal{W}_{\{1,2,3\}} \text {-rates for } \tilde{p}_{1, n}
$$

Conclusion

Conclusion

Summary.

■ New insights on Wasserstein approximation of measures/support

- Computationally efficient polynomial approximations

Outlook.

- Extension to the noisy regime
- Extension to rational approximations (ongoing)

■ Practical usage: approximation of Wasserstein distances $\mathcal{W}(\mu, \nu)$ by $\mathcal{W}\left(p_{n}, q_{n}\right)$
Preprint available: arXiv.2203.10531

Thank you for your attention!

References
E.J. Candès and C. Fernandez-Granda. "Towards a Mathematical Theory of Super-Resolution". In: Comm. Pure Appl. Math. 67.6 (2014), pp. 906-956.

Stephen D. Fisher. "Best Approximation by Polynomials". In: J. Approx. Th. 21.1 (1977), pp. 43-59.
Y. Hua and T.K. Sarkar. "Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response". In: IEEE Trans. Antennas Propagation 37.2 (1989).
L. Kantorovich. "On the Transfer of Masses (in Russian)". In: Doklady Akademii Nauk 37.2 (1942), pp. 227-229.
S. Kunis et al. "A Multivariate Generalization of Prony's Method". In: Linear Algebra Appl. 490 (2016), pp. 31-47.
H. N. Mhaskar. "Super-Resolution Meets Machine Learning: Approximation of Measures". In: J. Fourier Anal. Appl. 25.6 (2019), pp. 3104-3122.
H. Pan, T. Blu, and P.L. Dragotti. "Sampling Curves With Finite Rate of Innovation". In: IEEE Trans. Signal Process. 62.2 (2014), pp. 458-471.
K. Polisano et al. "A convex approach to super-resolution and regularization of lines in images". In: (2017). URL:
https://hal.archives-ouvertes.fr/hal-01599010.
E. Pauwels, M. Putinar, and J.B. Lasserre. "Data Analysis From Empirical Moments and the Christoffel Function". In: F. Comp. Math. 21 (2020), pp. 243-273.
G. R. de Prony. "Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques et sur celles de la Force Expansive de la Vapeur de l'Eau et de la Vapeur de l'Alkool, à différentes températures". In: Journal de l'École Polytechnique Floréal et Plairial 1.cahier 22 (1795), pp. 24-76.
R. Roy and T. Kailath. "ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques". In: IEEE Trans. Acoustics Speech Signal Process. 37.7 (1989), pp. 984-995.
F. Santambrogio. "Optimal transport for Applied Mathematicians". In: Birkäuser, NY 55.58-63 (2015), p. 94.
T. Sauer. "Prony's Method in Several Variables". In: Numer. Math. 136 (2017), pp. 411-438.
R. Schmidt. "Multiple Emitter Location and Signal Parameter Estimation". In: IEEE Trans. Antennas Propagation 34.3 (1986), pp. 276-280.
M. Wageringel. "Truncated moment problems on positive-dimensional algebraic varieties". 2022.

