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Sparse Super-Resolution

� Problem: Recover a signal from a few coarse linear measurements

Image Processing: Fluorescence microcospy (source - www.cellimagelibrary.org), astronomical imaging, . . .

Machine Learning: Mixture estimation, optimal transport, . . .

� Signals of interest are often structured: pointwise sources, curves, graphs of functions...

1

www.cellimagelibrary.org


Data Model

� Radon measures
d ∈ N \ {0}, T def.

= R/Z (Torus),

µ ∈M(Td)
∫

Singular measures µ

� Trigonometric moments
k ∈ Ω ⊂ Zd , here Zdn = {−n, . . . , n}d

µ̂(k) def.
=

∫
Td
e−2ıπ〈k, x〉dµ(x)

Fourier partial sum Snµ (n = 13)

?
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Recovery Approaches

Prony BLASSO (Dual) FRI

Christoffel

� Discrete support: exact recovery
- Prony’s method [R. de Prony, 1795], and subspace methods: ESPRIT [Roy and
Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989], ...

- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

� Structured support: exact recovery
- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]

� General case: asymptotic guarantees
- Polynomial approximations [Mhaskar, 2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

� In this talk: polynomial approximations of
µ via convolution generic support rates in p-Wasserstein

iSuppµ via SVD algebraic support rates in discrete case
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Overview

1. Preliminaries

2. Polynomial Approximants

3. Polynomial Interpolants

4. Conclusion
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Moment Matrix

For µ ∈M(Td) and n ∈ N, we define the moment matrix of µ of order n by

Tn
def.
=

(
µ̂(k− l)

)
k,l∈Ndn

where Ndn
def.
=

{
k ∈ Nd ; ||k||∞ 6 n

}
.

Remark

- Tn ∈ CN×N with N def.
= (n+ 1)d .

- Tn is multi-level Toeplitz: Tk+s,l = Tk,l−s , for all k, s, l ∈ Zd

- for instance with d = 1

Tn =


µ̂(0) µ̂(−1) µ̂(−2) . . .

µ̂(1) µ̂(0) µ̂(1) . . .

µ̂(2) µ̂(1) µ̂(0) . . .
...

...
...

. . .
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Wasserstein distances

� Distances between measures: f-divergences, discrepancies, Wasserstein distances, ...

Wp
p (µ, ν) = inf

{∫
d(x, y)pdπ(x, y) ; π ∈ Π(µ, ν)

}
[Kantorovich, 1942]

- set of couplings: Π(µ, ν)
def.
=

{
π ∈M+(Td × Td) ; π(·,Td) = µ, π(Td, ·) = ν

}
- d distance on Td : we use d(x, y) = ||x − y||p,T

def.
= mink∈Zd ||x − y + k||p .

� Dual problem:

Wp(µ, ν) = sup

{∫
ϕdµ+

∫
ψdν ; ϕ(x) + ψ(y) 6 ||x − y||pp,T

}
- forW1 , ψ? = −ϕ? and the constraint reads |ϕ(x)− ϕ(y)| 6 ||x − y||1,T, ∀x, y ∈ Td

� Wp metrizes the weak* topology (on compact sets)(
∀ϕ ∈ C (Td),

∫
ϕdµn →

∫
ϕdµ

)
⇐⇒ Wp(µn, µ)→ 0

. . .
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Polynomial Approximants



Fejér approximation

� The Fejér kernel Fn is defined by

Fn(x)
def.
=

1
N

d∏
i=1

sin2 ((n+ 1)πxi)
sin2 (πxi)

� For arbitrary µ, consider the polynomial

pn
def.
= Fn ∗ µ, i.e. pn(x) =

∫
Fn(y − x)dµ(y)

* =

- pn has a simple expression in terms of the moment matrix:

pn(x) = N−1vn(x)∗Tnvn(x), where vn(x) =
(
e2ıπ〈k, x〉

)
k∈Ndn

- pn can be computed using Fast Fourier Transforms:

pn
(
j
M

)
= N−1

∑
k∈Zdn

w(k)µ̂(k)e2ıπ〈 kM , j〉, where w(k) = F̂n(k) =
d∏
i=1

(1−
|ki|
n+ 1

)
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Convergence (Fejér)

Theorem (Weak-* convergence). Assuming (only) that µ has finite total variation, we
have that pn ⇀ µ. More precisely,

W1(pn, µ) 6
d
π2

log(n+ 1) + 3
n

Wp(pn, µ) 6
(

2d
p− 1

)1/p 1
(n+ 1)1/p

, p > 1

These bounds are tight in the worst case:
d
π2

(
log(n+ 2)
n+ 1

+
1

n+ 3

)
6 sup

µ∈M(Td)
W1(pn, µ)

(
d

2π2(p− 1)

)1/p 1
4n1/p

6 sup
µ∈M(Td)

Wp(pn, µ), p > 1

First step of the proof:

Use the dual formulation ofWp to derive the relation

Wp(Fn ∗ µ, µ)p 6
∫
Fn(x)||x||ppdx.
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Saturation

� Further assumptions on µ do not improve so much this bound.

Theorem (Saturation). For every measure µ ∈M(Td) not being the Lebesgue mea-
sure, there exists a constant c such that

W1(pn, µ) >
c

n+ 1

� For instance dµ = (1+ cos(2πx))dx =: w(x)dx yields

W1(pn,w) >
1

4π(n+ 1)
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Powers of Fejér approximations

� We define the higher localized kernels

r =
⌈p
2
+ 1

⌉
, m =

⌊n
r

⌋
, Kn,p(x)

def.
= Cm,d

d∏
i=1

sin2r((m+ 1)πxi)
sin2r(πxi)

,

→ For instance, with p = 1, Kn,1(x) = 3
m(2m2+1)

sin4((m+1)πx
sin4(πx) is the Jackson kernel

� Consider the polynomial

qn,p
def.
= Kn,p ∗ µ, i.e. qn,p(x) =

∫
Kn,p(x − y)dµ(y)

* =

- qn,p is of degree at most n
- qn,p can be computed with Fast Fourier Transforms

qn,p
(
j
M

)
= C−1

n
∑
k
K̂n,p(k)µ̂(k)e2ıπ〈 kM , j〉
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Convergence

Theorem. (Weak* convergence) Assuming that µ has finite total variation, we have that
qn,p ⇀ µ. More precisely, there exists Cp independent of n such that

Wp(qn,p, µ) 6
Cp
n
.

This rate is sharp in the worst-case

d(1−p)/p

4(n+ 1)
6 sup

µ∈M(Td)
Wp(qn,p, µ)

� In particular, with the Jackson kernel, we have for instance

W1(Kn,1 ∗ µ, µ) 6
3d

2(n+ 2)
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Best Polynomial Approximation

Theorem (Worst-case bound). For every d, n ∈ N, for every µ ∈ M(Td) with finite
total variation, there exists a polynomial of best approximation in the Wasserstein-1
distance. Moreover

sup
µ∈M(Td)

min
deg(p)6n

Wp(p, µ) >
d(1−p)/p

4(n+ 1)
.

Idea of proof

� DualW1 ←→ worst-case error for best polynomial approximation of Lipschitz functions

� Extend toWp usingWp(µ, ν) > d(1−p)/pW1(µ, ν) from Jensen’s and Hölder’s inequality
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Sharpness forW1

� For this worst-case bound, sharpness is revealed in the univariate case

Theorem. With x ∈ T we haveW1(p?, δx) = 1
4 (n+ 1)−1 .

- Proof involves the relation

W1(µ, ν) = ||B1 ∗ µ− B1 ∗ ν||L1 , where B1 : t ∈ T 7→
1
2
− t

(Periodic analog of the cumulative distribution formulation ofW1 on R)

- Transfer (by deconvolution) results on unicity of best L1-approximation to unicity of our
best polynomial approximation in some cases (e.g. µ a.c., or µ = δx)

� De La Vallée Poussin approximation [Mhaskar, 2019] also achieves optimal rate but
dependency with d is worse in the constant
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Numerical Verification

� Test on two measures:
- a discrete measure µd , s = 15
- a (discretized) algebraic curve µz , s = 3000

� Semidiscrete algorithm to compute the Wasserstein distance between polynomial density
and singular measure.

(m)W1-rates for Fejér (µd , µz )

10
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n
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(n) W2-rates for Fejér and Kn,1 (µz )
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(o) W3-rates for Fejér and Kn,2 (µz )
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Polynomial Interpolants



Interpolating Polynomial

� The singular value decomposition: Tn =
∑r

j=1 σju
(n)
j v(n)∗j allows to define

p1,n(x) =
1
N

r∑
j=1
|u(n)j (x)|2

→ unweighted counterpart of pn = N−1e(x)∗Tne(x) = N−1∑σju
(n)
j (x)v(n)j (x)∗ .

We have 0 6 p1,n 6 1.

� Assume that Z def.
= Suppµ is an algebraic variety (i.e. defined by polynomial equations)

Let V(Ker Tn) be the set of common roots of all polynomials in Ker Tn .

Theorem (Interpolation). If V(Ker Tn) = Z, then p1,n(x) = 1 iff x ∈ V .

→ V(Ker Tn) = Z always holds for sufficiently large n if µ is discrete [Kunis
et al., 2016],[Sauer, 2017] or nonnegative [Wageringel, 2022]

µ p20(µ) p1,20(µ)
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Pointwise convergence

� We assume that Z 6= Td

Theorem. Let y ∈ Td \ Z, and let g be a polynomial of max-degree m such that
g(y) 6= 0 and g vanishes on Z. Then, for all n > m,

p1,n+m(y) 6
||g||2L2
|g(y)|

m(4m+ 2)d

n+ 1
+

dm
n+m+ 1

� In combination with the interpolation property, this proves pointwise convergence to the
characteristic function of the support, with rate O(n−1).

16



The Discrete Case

� If µ =
∑r

j=1 λjδxj , stronger results are derived with the help of the Vandermonde
decomposition of Tn

Theorem (Pointwise convergence). Let x 6= xj for all j. If n + 1 > 4d
minj 6=l ||xj−xl||∞

,
then

p1,n(x) 6
1

3(n+ 1)2
λmax

λmin

∑ 1
||x − xj||2∞

Theorem (Weak* convergence). Let p̃1,n
def.
= p1,n/||p1,n||L1 . We have

p̃1,n ⇀ µ̃
def.
=

1
r

r∑
j=1

δxj .

More specifically W1(p̃1,n, µ̃) = O(
log n
n

)

Wp(p̃1,n, µ̃) = O(n−1/p)

17



Numerical Verification
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Conclusion

Summary.

� New insights on Wasserstein approximation of measures/support

� Computationally efficient polynomial approximations

Outlook.

� Extension to the noisy regime

� Extension to rational approximations (ongoing)

� Practical usage: approximation of Wasserstein distancesW(µ, ν) byW(pn, qn)

Preprint available: arXiv.2203.10531
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Thank you for your attention!
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