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arse Super-Reso

m Problem: Recovera from a few coarse linear measurements

Image Processing: Fluorescence microcospy (source - www.cellimagelibrary.org), astronomical imaging, . . .

A

Machine Learning: Mixture estimation, optimal transport, . . .

m Signals of interest are often structured:  pointwise sources, curves, graphs of functions...


www.cellimagelibrary.org
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m Radon measures
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Recovery Approaches

Prony BLASSO (Dual) FRI

m Discrete support: exact recovery
- Prony’s method [R. de Prony, 1795], and subspace methods: ESPRIT [Roy and
Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989], ...
- Off-the-grid optimization [Candés and Fernandez-Granda, 2014]

m Structured support: exact recovery
- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]
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m Discrete support: exact recovery
- Prony’s method [R. de Prony, 1795], and subspace methods: ESPRIT [Roy and
Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989], ...
- Off-the-grid optimization [Candés and Fernandez-Granda, 2014]

m Structured support: exact recovery
- Finite Rate of Innovation [Pan, Blu, and Dragotti, 2014]
- Super-resolution of lines [Polisano et al., 2017]

m General case: asymptotic guarantees
- Polynomial approximations [Mhaskar,2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

m In this talk: polynomial approximations of
p | via convolution | generic support | rates in p-Wasserstein
Epm | via SVD | algebraic support | rates in discrete case
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Moment Matrix

For u € M(T%) and n € N, we define the moment matrix of u of order n by

T = (atk-)

k,leNd

where Nd & {ke N ; |k < n}.

Remark

- Ty € CVXN with N & (n 4 1)d.
- Tn is multi-level Toeplitz: Tys | = Tg —s, forall k,s, [ € zd
- forinstance with d =1

A0)  a(=1)  A(-2)
A() ) A
Tn={p(2) ﬁ() /1(0)



Wasserstein distances

m Distances between measures:  f-divergences, discrepancies, Wasserstein distances, ...
WY (p,v) = inf {/d(x,y)pdw(x,y) ;e N(w, 1/)} [Kantorovich, 1942]

- set of COUp“ﬂgS: I_I(H'v V) d:@fv {71' & M+(Td X Td) ; TF(-,Td) =H, ﬂl(Tdv ) = l/} ‘

- d distance on T we use d(x,y) = |x — V|p.1 & min,cza |X — ¥ + Rlp.
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Wasserstein distances

m Distances between measures:  f-divergences, discrepancies, Wasserstein distances, ...
WY (p,v) = inf {/d(x,y)pdw(x,y) ;e N(w, 1/)} [Kantorovich, 1942]

- set of couplings: N(u,v) € {r € M4(T¢ x T9) ; n(-,T9) = p, n(T%-) = v} '

- d distance on T% we use d(x,y) = |x — v/, L ming, g X — v A R p-

m Dual problem:
Walisr) = sup { [ ot [[waws 000 +90) < b=z}
- for Wi, ¢ = —¢. and the constraint reads |p(x) — o(y)| < |x — ¥|1,1, ¥x,y € T

m W, metrizes the weak* topology (on compact sets)

(th € €(TY), /godun — /apdu) <~ Wp(pn, ) = 0

- A 1



Polynomial Approximants



Fejér approximation

m The Fejér kernel Fy is defined by

d in? X
Fa(x) = % H : S(IEI'; (:_)1)) i
i=1 L

m For arbitrary u, consider the polynomial

Pn et Fn*p, ie  pp(x)= /Fn(y —x)dp(y)
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Fejér approximation

m The Fejér kernel Fy is defined by

def. 1 sin? ((ﬂ r 1)7TX,')
) = /1_11: sin? (mx;)

m For arbitrary u, consider the polynomial

Pn i Fn*p, ie  pp(x)= /Fn(y = x)du(y)
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- pn has a simple expression in terms of the moment matrix:
pn(x) = N (x)*Tava(x), where vp(x) = <e2”<”vx>>k .
€
- pn can be computed using Fast Fourier Transforms:

o () =" 5 w(a(IE ™D, where w(e) = Fa(r) = H“
ke




Convergence (Fejér)

Theorem (Weak-* convergence).  Assuming (only) that x has finite total variation, we
have that p, — w. More precisely,

d log(n+1)+3
o) < & B £ +3

2d \P 1
Wp(p,u)s( ) , P>
p—1
These bounds are tight in the worst case:

d [log(n-+2 1
— (er ) < sup Wi(pi,p)
s n+3 HEM(T)

()"
< sup Wr(po,p), p>1
2m2(p —1) 4 weM(Td) ’

First step of the proof:

Use the dual formulation of W, to derive the relation

WolFo )P < [ Falelfa.



m Further assumptions on u do not improve so much this bound.

Theorem (Saturation).  For every measure u € M(T?) not being the Lebesgue mea-
sure, there exists a constant ¢ such that

@
Wi(pn, 1) 2 ——

m For instance dp = (14 cos(2mx))dx =: w(x)dx yields

1

>3
Wi(pn,w) > prTE—



Powers of Fejér approximations

m We define the higher localized kernels

r= [§+ﬂ, m= L:J, Knp(x)difcmdnw

r sin” (mx;)

. 4
— For instance, with p = 1, Kn 1(x) = m% is the Jackson kernel

m Consider the polynomial

Gnp EKnprp, e qn,p(x):/Kn,p(X—Y)dH(y)

2 \ L

-

-0.1 0 01

- Qn,p is of degree at most n
- gn,p Can be computed with Fast Fourier Transforms

ans (£) =G PIUFCLCLR



Convergence

Theorem. (Weak* convergence) Assuming that u has , we have that
Gn,p — p. More precisely, there exists Cp such that

C
Wo(qn,p, 1) < 2.

This rate is sharp in the worst-case

d(=p)/p Wi )
Y < k)
an+1) uej\L/JlF()Td) p\Gn,p,

m In particular, with the Jackson kernel, we have for instance

3d

Wi (K 9 L —
1( n,1* K lt) 2(n+2)



Best Polynomial Approximation

Theorem (Worst-case bound).  For every d,n € N, for every u € M(Td) with

, there exists a polynomial of best approximation in the Wasserstein-1
distance. Moreover
d=p)/p

sup min - Whp(p, p) =
pEM(TI) deg(p)< bl ) 4

Idea of proof

m Dual Wy worst-case error for best polynomial approximation of Lipschitz functions

m Extend to W, using Wy(u, v) > d(=P)/PW(u,v) from Jensen’s and Hélder's inequality



Sharpness for W,

m For this worst-case bound, sharpness is revealed in the univariate case

Theorem.  With x € T we have Wh(px, 6x) = %(n +1)~"
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Sharpness for W,

m For this worst-case bound, sharpness is revealed in the univariate case

Theorem.  With x € T we have Wh(px, 6x) = %(n +1)~"

- Proof involves the relation

1
Wi(p,v) = |Brsp— By« v|, where By:teTw— 2 —t
(Periodic analog of the cumulative distribution formulation of WW; on R)

- Transfer (by deconvolution) results on unicity of best L'-approximation to unicity of our
best polynomial approximation in some cases (e.g. i a.c., or p = &)

m De La Vallée Poussin approximation [Mhaskar, 2019] also achieves optimal rate but
dependency with d is worse in the constant



Numerical Verification

m Test on two measures:

- a discrete measure pg, s =15
- a(discretized) algebraic curve pz, s = 3000
m Semidiscrete algorithm to compute the Wasserstein distance between polynomial density

and singular measure.

1072t Wi(Fy * ra, pra)
—Wi(Fy * s, )
—upper bound
- -worst case bound
10° 10'
n

(m) Wi-rates for Fejér (g, p1z)

102

10"
—Wa(F, % ey i) 102 = Wa(F * e, )
1y 1/9n
— WKz % i, ) Wi K % s, 1)
in 1/n
10° 10' 102 10° 10 102
n n
(0) Ws-rates for Fejér and Kp 5 (uz)

(n) W,-rates for Fejér and Ky 1 (pz)



Polynomial Interpolants




Interpolating Polynomial

m The singular value decomposition: T, = E/ ,oju / ) allows to define
p1n( Z u® (0P

— unweighted counterpart of p, = N~'e(x)*Tpe(x) = N~ Za} (X) (x)*.
We have 0 < py, < 1.
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m The singular value decomposition: T, = E/ ,oju / ) allows to define
p1n( Z u® (0P

— unweighted counterpart of p, = N~'e(x)*Tpe(x) = N~ Za} (X) (x)*.
We have 0 < py, < 1.

m Assume that Z & Supp i is an algebraic variety (i.e. defined by polynomial equations)
Let V(Ker Ty) be the set of common roots of all polynomials in Ker Ty.

Theorem (Interpolation).  If V(Ker T,) = Z, then py n(x) = 1iffx € V.



Interpolating Polynomial

m The singular value decomposition: Tp = Z;ﬁ ojuj(”)vj(”)* allows to define

1 r
pin() = 5 2 14V ()P
j=1

— unweighted counterpart of py = N~"e(x)*Tpe(x) = N~ Zajuj(”)(x)vl(”)(x)f
We have

m Assume that 7 & Supp p is an (i.e. defined by polynomial equations)
Let V(Ker Ty) be the set of common roots of all polynomials in Ker Tp.

Theorem (Interpolation).  If V(KerTy) = Z, then p1n(x) = 1iffx € V.

— V(Ker Ty) = Z always holds for sufficiently large n if u is discrete [Kunis
et al., 2016],[Sauer, 2017] or nonnegative [Wageringel, 2022]

w P20 () P1,20(k)




Pointwise convergence

m We assume that Z # T¢

Theorem. lety € T9\ Z and let g be a polynomial of max-degree m such that
g(y) # 0 and g vanishes on Z. Then, for all n > m,

I91%, m(4m + 2)° dm
P1n+m(y) < 2 m( )

la(v)| M = (i <= 1

m In combination with the interpolation property, this proves
of the support, with rate O(n—").



The Discrete Case

mfu= Z/’:w Ajdxj, stronger results are derived with the help of the Vandermonde
decomposition of T,

L ; : 4d
Theorem (Pointwise convergence).  Let x # x; forall j. If n +1 > T vy pe
then ] N ]
p1Y (X) < L R 1133 -
3 Amin ”X _X[H%x)

Theorem (Weak* convergence).  Let p p & p1,n/lP1nl. We have

def 1 Z5x
More specifically
W‘\(ﬁ'\, nﬂ‘) = O( )
Wo(P1,n, i) = O( )



Numerical Verification

107 S

= Wi (P10 (1), fia) N
log(n)/n RN
1072t~ Wa(Bralpa), fra) N
1/v/n 3
- W3 (D1 (1), i)
--1/39n

100 10" 102
n

Wy 2,33 -rates for pq
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Conclusion

Summary.

m New insights on Wasserstein approximation of measures/support

m Computationally efficient polynomial approximations
Outlook.

m Extension to the noisy regime
m Extension to rational approximations (ongoing)

m Practical usage: approximation of Wasserstein distances W(u, v) by W(pn, qn)

Preprint available: arXiv.220310531



Thank you for your attention!
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