
An approximate joint diagonalization algorithm for
off-the-grid sparse and non-sparse recovery

Paul Catala1. Joint work with J.-F. Cardoso2, V. Duval3 and G. Peyré4
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Motivations

Super-resolution

source - www.cellimagelibrary.org

� recover signal µ from

coarse, noisy

measurements

Gaussian transport

Optimal transport

� find optimal coupling

between two probability

distributions µ1 and µ2

Invariant measures

Hénon map

� find measure which is

invariant under a given

dynamics
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A common framework

Super-resolution

source - www.cellimagelibrary.org Gaussian transport

Optimal transport Invariant measures

Hénon map

� Unknown: µ ∈M+(Td )

� Given: k ∈ {−n, . . . , n}d ,

µ̂(k) =

∫
Td

e−2ıπ〈k, x〉dµ(x)

� Probl: retrieve µ from

(µ̂(k)) ∈ CN

� Unknown: γ ∈M+(T2d ) � Unknown: ν ∈M+(Td )

We want off-the-grid recovery algorithms (= no spatial discretization)
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Roadmap

Measures
Truncated

moments

Prony (R. de Prony, 1795), ESPRIT (Roy et al., 1986), etc...

Polynomial approximations (Mhaskar, 2019),

Christoffel (Pauwels et al., 2020)

super-resolution

Moment hierarchies (Lasserre, 2001)

optimal transport

invariant measures
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Preliminary: the sparse case



Support identification

� Suppose µ =
∑r

k=1 λkδxk , λk > 0, xk ∈ Td .

� Idea: Encode Suppµ = V(I) for some ideal I ⊂ Tn[x]

- d = 1, I = (p), Prony’s method (R. de Prony, 1795)

- d > 1, I = (p1, . . . , ps), Stetter-Möller method (Möller and Stetter, 1995)

� How do we find I?

- Main ingredient: (truncated) moment matrix

Tn(µ)
def.
= (µ̂(k − l))k,l∈{0,...,n}d

- Theorem (Kunis et al., 2016; Sauer, 2017).

If n is sufficiently large, then Suppµ = V((Ker Tn))

Rem. Tn is Toeplitz, and

semidefinite positive since

µ is nonnegative

We identify a vector q to

q(x) =
∑

qke
−2ıπ〈k, x〉

� A sufficient condition for “sufficiently large” is flatness (Curto and Fialkow, 1996)

- Tn(� 0) is said to be flat if rankTn = rankTn−1.

- Flatness =⇒ µ discrete

4



Support identification

� Suppose µ =
∑r

k=1 λkδxk , λk > 0, xk ∈ Td .

� Idea: Encode Suppµ = V(I) for some ideal I ⊂ Tn[x]

- d = 1, I = (p), Prony’s method (R. de Prony, 1795)

- d > 1, I = (p1, . . . , ps), Stetter-Möller method (Möller and Stetter, 1995)
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Multiplication matrices

� Let In
def.
= (Ker Tn)

� Computing V(In) is fundamentally an eigenproblem (Stetter, 1996)

- Definition. The multiplication operators associated with Tn are

χi : T [x]/In → T [x]/In
p(x) (mod In) 7→ e−2ıπxi p(x) (mod In)

- Proposition (Laurent, 2010; Harmouch et al., 2017). Assume

Tn is flat, of rank r , and let (U,Σ,U∗) be the singular value

decomposition of Tn−1. Then in some basis

Xi = Σ−1U∗T
(i)
n−1U ∈ Cr×r

where T
(i)
n−1 is the shifted matrix with entries µ̂(k − l + ei )

- Theorem (Laurent, 2010). If Tn is flat, the matrices Xi are

jointly diagonalizable: there exists P ∈ GLr (C) such that

PXiP
−1 =


e−2ıπx1,i

. . .

e−2ıπxr,i

 , i = 1, . . . , r
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Sparse recovery

Algorithm 1: Multivariate recovery for flat data

Input: Tn SDP, Toeplitz, flat matrix

Output: x1, . . . , xr ∈ Td

1 for i = 1 to d do

2 Compute shifted matrix T
(i)
n−1

3 Compute svd Tn−1 = UΣU∗

4 Compute multiplication matrices Xi = Σ−1U∗T
(i)
n−1U

5 end

6 Compute joint diagonalization basis P
∗Diagonalize Xα =

∑
αiXi , for random αi ∈ [0, 1]

7 Return xj,i = − 1
2π

arg (P−1XiP)jj , j = 1, . . . , r , i = 1, . . . , d

∗ if the Xi s are jointly diagonalizable, then with probability one Xα is non-derogatory

(i.e. all eigenspaces are of dimension 1).
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Approximate joint diagonalization



Non-sparse recovery

� If µ is not discrete, we essentially lose the flatness of Tn

� Guarantees of robustness in the non-flat case exist (Klep et al., 2018)

� What is the numerical perspective?

Algorithm 2: Multivariate recovery for flat data

Input: Tn SDP, Toeplitz, flat matrix

Output: x1, . . . , xr ∈ Td

1 for i = 1 to d do

2 Compute shifted matrix T
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n−1

3 Compute svd Tn−1 = UΣU∗

4 Compute multiplication matrices Xi = Σ−1U∗T
(i)
n−1U

5 end

6 Diagonalize Xα =
∑
αiXi , for random αi ∈ [0, 1]

7 Return xj,i = − 1
2π
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Diagonality Criterion

� Xi non-commuting, not jointly diagonalizable

→ find a basis in which they are ”almost” diagonal

� Off-diagonal criterion to minimize

O(P)
def.
=

∑
i

∑
α 6=β

(PXiP
−1)2

αβ

- criterion used e.g. in (Cardoso and Souloumiac, 1996; Joho and Rahbar,

2002) for blind source separation, but restricted to orthogonal matrices

- Xi are not Hermitian

- Riemannian optimization over GLr (C)
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Quasi-Newton updates

� Invertibility is maintained using updates of the form Pt+1 = (Ir + E)Pt

� Taylor expansion: O((I + E)P) = O(T ) + 〈G(P), E〉+ 〈H(P)E, E〉+ o(||E||2)

- Relative gradient: with Y = Y − Diag(Y ) and Yi = PXiP
−1

G(P) =
∑
i

Y iY
∗
i − Y ∗i Y i

- Relative Hessian: use diagonal approximation (Ablin et al., 2019). When Yi

are diagonal,

H̃pqrs(P) = δpr δqs
∑
i

|(Yi )pp − (Yi )qq |2

→ H̃ is sparse and positive semidefinite

� Quasi-Newton update: Pt+1 = (I + αEt)Pt , where α is found by linesearch and

Et = −(H̃(Pt) + βI )−1 · G(Pt)
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End-to-End Algorithm

Algorithm 5:

Input: Tn ∈ CN×N SDP, Toeplitz matrix, P0 = Ir
1 for i = 1 to d do

2 Compute svd Tn−1 = UΣU∗

3 Compute matrices Xi = Σ−1U∗T
(i)
n−1U

4 end

5 for k = 0 to K − 1 do

6 Compute G(Pk ;X1, . . . ,Xd ) and H̃(Pk ;X1, . . . ,Xd )

7 Compute Ek = −(H̃(Pk ) + βI )−1 · G(Pk )

8 Backtracking minαO((I + αEk )Pk )

9 Update Pk+1 = (I + αkEk )Pk

10 end

11 Return xj,i = − 1
2π

arg (P−1
K XiPK )jj , j = 1, . . . , r , i = 1, . . . , d

12 amplitudes →, projection on Vandermonde system
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Numerics

Algorithm 3:

Input: Tn ∈ CN×N SDP, Toeplitz matrix, P0 = Ir
1 for i = 1 to d do

2 Compute svd Tn−1 = UΣU∗ : tolerance σk > 10−3 max(σ)

3 Compute matrices Xi = Σ−1U∗T
(i)
n−1U

4 end

5 for k = 0 to N − 1 do

6 Compute G(Pk ;X1, . . . ,Xd ) and H̃(Pk ;X1, . . . ,Xd )

7 Compute Ek = −(H̃(Pk ) + βI )−1 · G(Pk ) : β fixed

8 Backtracking minαO((I + αEk )Pk ) : α← α/2

9 Update Pk+1 = (I + αkEk )Pk

10 end

11 Return xj,i = − 1
2π

arg (P−1
N XiPN)jj , j = 1, . . . , r , i = 1, . . . , d

12 Solve V (x) · a = c, prune aj < 10−3 max(|a|)
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Applications



Super-resolution

n = 5 n = 10 n = 20 (15 for sphere)

13



Optimal transport

� We want to solve

min

∫
Td×Td

c(x , y)dγ(x , y) s.t. γ ∈ Π(µ1, µ2)

- Using Lasserre’s hierarchies (Lasserre, 2008), can be approximated by a SDP

- perform the extraction on the resulting matrix

1

2

n = 5 n = 10 n = 20
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Optimal transport

uniform distributions n = 10

uniform distributions, n = 10 Gaussian mixtures, n = 10
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Invariant measures

� Discrete-time system: given a system xt+1 = f (xt), we want to find a measure µ

such that f]µ = µ

- Logistic map, xt+1 = rxt(1− xt) =: f (xt)

- We use Lasserre’s hierarchies (Magron et al., 2019) to approximate

min J(µ) s.t. f]µ = µ and Eµ = 1

r = 2 r = 3.6 r = 4

logistic map, n = 30
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Invariant measures

� Dynamical system: given a system ẋ(t) = u(x(t)) we want to find a measure µ

such that div(uµ) = 0

- We consider the vector field u displayed below

- We use Lasserre’s hierarchies to approximate

min J(µ) s.t. div(uµ) = 0 and Eµ = 1
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Conclusion

� Joint diagonalization step in algebraic extraction is crucial

→ Dedicated solvers are key to make the procedure performant outside the theory

� Work hand in hand with Lasserre’s hierarchies to define an integrated workflow

� application in optimal transport, invariant measures, . . .

� theoretical perspectives: convergence? geometrical interpretation?

Thank you for your attention!
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