An approximate joint diagonalization algorithm for off-the-grid sparse and non-sparse recovery

Paul Catala ${ }^{1}$. Joint work with J.-F. Cardoso ${ }^{2}$, V. Duval ${ }^{3}$ and G. Peyré ${ }^{4}$
GAMM 2022, Aachen, August 172022
${ }^{1}$ University of Osnabrück, ${ }^{2}$ Institut d'Astrophysique de Paris, CNRS, ${ }^{3}$ Inria Paris, ${ }^{4}$ Ecole Normale Supérieure, PSL, CNRS

Motivations

source - www.cellimagelibrary.org

- recover signal μ from coarse, noisy measurements

Gaussian transport

- find optimal coupling between two probability distributions μ_{1} and μ_{2}

Invariant measures

Hénon map

- find measure which is invariant under a given dynamics

A common framework

Invariant measures

Hénon map

- Unknown: $\nu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)$

source - www.cellimagelibrary.org

Gaussian transport

- Unknown: $\gamma \in \mathcal{M}_{+}\left(\mathbb{T}^{2 d}\right)$
- Unknown: $\mu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)$
- Given: $k \in\{-n, \ldots, n\}^{d}$,

$$
\hat{\mu}(k)=\int_{\mathbb{T}^{d}} e^{-2 \imath \pi\langle k, x\rangle} \mathrm{d} \mu(x)
$$

- Probl: retrieve μ from $(\hat{\mu}(k)) \in \mathbb{C}^{N}$

We want off-the-grid recovery algorithms (= no spatial discretization)

Roadmap

Roadmap

optimal transport

Preliminary: the sparse case

Support identification

■ Suppose $\mu=\sum_{k=1}^{r} \lambda_{k} \delta_{x_{k}}, \quad \lambda_{k} \geqslant 0, \quad x_{k} \in \mathbb{T}^{d}$.
■ Idea: Encode Supp $\mu=\mathcal{V}(\mathcal{I})$ for some ideal $\mathcal{I} \subset \mathcal{T}_{n}[x]$

- $d=1, \mathcal{I}=(p)$, Prony's method (R. de Prony, 1795)
- $d>1, \mathcal{I}=\left(p_{1}, \ldots, p_{s}\right)$, Stetter-Möller method (Möller and Stetter, 1995)

Support identification

■ Suppose $\mu=\sum_{k=1}^{r} \lambda_{k} \delta_{x_{k}}, \quad \lambda_{k} \geqslant 0, \quad x_{k} \in \mathbb{T}^{d}$.
■ Idea: Encode Supp $\mu=\mathcal{V}(\mathcal{I})$ for some ideal $\mathcal{I} \subset \mathcal{T}_{n}[x]$

- $d=1, \mathcal{I}=(p)$, Prony's method (R. de Prony, 1795)
- $d>1, \mathcal{I}=\left(p_{1}, \ldots, p_{s}\right)$, Stetter-Möller method (Möller and Stetter, 1995)

- How do we find \mathcal{I} ?
- Main ingredient: (truncated) moment matrix

$$
T_{n}(\mu) \stackrel{\text { def. }}{=}(\hat{\mu}(k-l))_{k, l \in\{0, \ldots, n\}^{d}}
$$

- Theorem (Kunis et al., 2016; Sauer, 2017).

If n is sufficiently large, then $\operatorname{Supp} \mu=\mathcal{V}\left(\left(\operatorname{Ker} T_{n}\right)\right)$

Rem. T_{n} is Toeplitz, and semidefinite positive since μ is nonnegative

We identify a vector q to $q(x)=\sum q_{k} e^{-2 \imath \pi\langle k, x\rangle}$

Support identification

■ Suppose $\mu=\sum_{k=1}^{r} \lambda_{k} \delta_{x_{k}}, \quad \lambda_{k} \geqslant 0, \quad x_{k} \in \mathbb{T}^{d}$.
■ Idea: Encode Supp $\mu=\mathcal{V}(\mathcal{I})$ for some ideal $\mathcal{I} \subset \mathcal{T}_{n}[x]$

- $d=1, \mathcal{I}=(p)$, Prony's method (R. de Prony, 1795)
- $d>1, \mathcal{I}=\left(p_{1}, \ldots, p_{s}\right)$, Stetter-Möller method (Möller and Stetter, 1995)

- How do we find \mathcal{I} ?
- Main ingredient: (truncated) moment matrix

$$
T_{n}(\mu) \stackrel{\text { def. }}{=}(\hat{\mu}(k-l))_{k, l \in\{0, \ldots, n\}^{d}}
$$

- Theorem (Kunis et al., 2016; Sauer, 2017).

If n is sufficiently large, then Supp $\mu=\mathcal{V}\left(\left(\operatorname{Ker} T_{n}\right)\right)$

Rem. T_{n} is Toeplitz, and semidefinite positive since μ is nonnegative

We identify a vector q to $q(x)=\sum q_{k} e^{-2 \imath \pi\langle k, x\rangle}$

■ A sufficient condition for "sufficiently large" is flatness (Curto and Fialkow, 1996)

- $T_{n}(\succeq 0)$ is said to be flat if rank $T_{n}=\operatorname{rank} T_{n-1}$.
- Flatness $\Longrightarrow \mu$ discrete

Multiplication matrices

■ Let $\mathcal{I}_{n} \stackrel{\text { def. }}{=}\left(\operatorname{Ker} T_{n}\right)$
■ Computing $\mathcal{V}\left(\mathcal{I}_{n}\right)$ is fundamentally an eigenproblem (Stetter, 1996)

- Definition. The multiplication operators associated with T_{n} are

$$
\begin{array}{llll}
\chi_{i}: & \mathcal{T}[x] / \mathcal{I}_{n} & \rightarrow \mathcal{T}[x] / \mathcal{I}_{n} \\
& p(x)\left(\bmod \mathcal{I}_{n}\right) & \mapsto & e^{-2 \imath \pi x_{i}} p(x) \quad\left(\bmod \mathcal{I}_{n}\right)
\end{array}
$$

- Proposition (Laurent, 2010; Harmouch et al., 2017). Assume T_{n} is flat, of rank r, and let $\left(U, \Sigma, U^{*}\right)$ be the singular value decomposition of T_{n-1}. Then in some basis

$$
X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U \in \mathbb{C}^{r \times r}
$$

where $T_{n-1}^{(i)}$ is the shifted matrix with entries $\hat{\mu}\left(k-I+e_{i}\right)$

- Theorem (Laurent, 2010). If T_{n} is flat, the matrices X_{i} are jointly diagonalizable: there exists $P \in \mathrm{GL}_{r}(\mathbb{C})$ such that

$$
P X_{i} P^{-1}=\left(\begin{array}{ccc}
e^{-2 \imath \pi x_{1, i}} & & \\
& \ddots & \\
& & e^{-2 \imath \pi x_{r, i}}
\end{array}\right), \quad i=1, \ldots, r
$$

Sparse recovery

Algorithm 1: Multivariate recovery for flat data
Input: T_{n} SDP, Toeplitz, flat matrix
Output: $x_{1}, \ldots, x_{r} \in \mathbb{T}^{d}$
1 for $i=1$ to d do
2 Compute shifted matrix $T_{n-1}^{(i)}$
3 Compute svd $T_{n-1}=U \Sigma U^{*}$
4 Compute multiplication matrices $X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U$
5 end
6 Compute joint diagonalization basis P
$\mid *$ Diagonalize $X_{\alpha}=\sum \alpha_{i} X_{i}$, for random $\alpha_{i} \in[0,1]$
$7 \underline{\text { Return } x_{j, i}=-\frac{1}{2 \pi} \arg \left(P^{-1} X_{i} P\right)_{j j}, \quad j=1, \ldots, r, \quad i=1, \ldots, d}$

* if the $X_{i} \mathrm{~s}$ are jointly diagonalizable, then with probability one X_{α} is non-derogatory (i.e. all eigenspaces are of dimension 1).

Approximate joint diagonalization

Non-sparse recovery

- If μ is not discrete, we essentially lose the flatness of T_{n}
- Guarantees of robustness in the non-flat case exist (Klep et al., 2018)
- What is the numerical perspective?

```
Algorithm 2: Multivariate recovery for flat data
Input: \(T_{n}\) SDP, Toeplitz, flat matrix
Output: \(x_{1}, \ldots, x_{r} \in \mathbb{T}^{d}\)
1 for \(i=1\) to \(d\) do
2 Compute shifted matrix \(T_{n-1}^{(i)}\)
3 Compute svd \(T_{n-1}=U \Sigma U^{*}\)
4 Compute multiplication matrices \(X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U\)
5 end
6 Diagonalize \(X_{\alpha}=\sum \alpha_{i} X_{i}\), for random \(\alpha_{i} \in[0,1]\)
7 Return \(x_{j, i}=-\frac{1}{2 \pi} \arg \left(P^{-1} X_{i} P\right)_{j j}, \quad j=1, \ldots, r, \quad i=1, \ldots, d\)
```


Non-sparse recovery

- If μ is not discrete, we essentially lose the flatness of T_{n}
- Guarantees of robustness in the non-flat case exist (Klep et al., 2018)
- What is the numerical perspective?

```
Algorithm 3: Multivariate recovery for flat data
Input: \(T_{n}\) SDP, Toeplitz, flat matrix
Output: \(x_{1}, \ldots, x_{r} \in \mathbb{T}^{d}\)
1 for \(i=1\) to \(d\) do
2 Compute shifted matrix \(T_{n-1}^{(i)}\)
3 Compute svd \(T_{n-1}=U \Sigma U^{*}\)
4 Compute multiplication matrices \(X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U\)
5 end
6 Diagonalize \(X_{\alpha}=\sum \alpha_{i} X_{i}\), for random \(\alpha_{i} \in[0,1]\)
7 Return \(x_{j, i}=-\frac{1}{2 \pi} \arg \left(P^{-1} X_{i} P\right)_{j j}, \quad j=1, \ldots, r, \quad i=1, \ldots, d\)
```


Non-sparse recovery

■ If μ is not discrete, we essentially lose the flatness of T_{n}

- Guarantees of robustness in the non-flat case exist (Klep et al., 2018)
- What is the numerical perspective?

```
Algorithm 4: Multivariate recovery for flat data
Input: \(T_{n}\) SDP, Toeplitz, flat matrix
Output: \(x_{1}, \ldots, x_{r} \in \mathbb{T}^{d}\)
1 for \(i=1\) to \(d\) do
2 Compute shifted matrix \(T_{n-1}^{(i)}\)
3 Compute svd \(T_{n-1}=U \Sigma U^{*}\)
4 Compute multiplication matrices \(X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U\)
5 end
6 Diagonalize \(X_{\alpha}=\sum \alpha_{i} X_{i}\), for random \(\alpha_{i} \in[0,1]\)
7 Return \(x_{j, i}=-\frac{1}{2 \pi} \arg \left(P^{-1} X_{i} P\right)_{j j}, \quad j=1, \ldots, r, \quad i=1, \ldots, d\)
```


Diagonality Criterion

■ X_{i} non-commuting, not jointly diagonalizable
\rightarrow find a basis in which they are "almost" diagonal

- Off-diagonal criterion to minimize

$$
\mathcal{O}(P) \stackrel{\text { def. }}{=} \sum_{i} \sum_{\alpha \neq \beta}\left(P X_{i} P^{-1}\right)_{\alpha \beta}^{2}
$$

- criterion used e.g. in (Cardoso and Souloumiac, 1996; Joho and Rahbar, 2002) for blind source separation, but restricted to orthogonal matrices
- X_{i} are not Hermitian
- Riemannian optimization over $\mathrm{GL}_{r}(\mathbb{C})$

Quasi-Newton updates

■ Invertibility is maintained using updates of the form $P_{t+1}=\left(I_{r}+\mathcal{E}\right) P_{t}$
■ Taylor expansion: $\mathcal{O}((I+\mathcal{E}) P)=\mathcal{O}(T)+\langle G(P), \mathcal{E}\rangle+\langle H(P) \mathcal{E}, \mathcal{E}\rangle+o\left(\|\mathcal{E}\|^{2}\right)$

- Relative gradient: with $\underline{Y}=Y-\operatorname{Diag}(Y)$ and $Y_{i}=P X_{i} P^{-1}$

$$
G(P)=\sum_{i} \underline{Y}_{i} Y_{i}^{*}-Y_{i}^{*} \underline{Y}_{i}
$$

- Relative Hessian: use diagonal approximation (Ablin et al., 2019). When Y_{i} are diagonal,

$$
\tilde{H}_{p q r s}(P)=\delta_{p r} \delta_{q s} \sum_{i}\left|\left(Y_{i}\right)_{p p}-\left(Y_{i}\right)_{q q}\right|^{2}
$$

$\rightarrow \tilde{H}$ is sparse and positive semidefinite
■ Quasi-Newton update: $P_{t+1}=\left(I+\alpha \mathcal{E}_{t}\right) P_{t}$, where α is found by linesearch and

$$
\mathcal{E}_{t}=-\left(\tilde{H}\left(P_{t}\right)+\beta I\right)^{-1} \cdot G\left(P_{t}\right)
$$

End-to-End Algorithm

```
Algorithm 5:
    Input: \(T_{n} \in \mathbb{C}^{N \times N}\) SDP, Toeplitz matrix, \(P_{0}=I_{r}\)
    for \(i=1\) to \(d\) do
    2 Compute svd \(T_{n-1}=U \Sigma U^{*}\)
        Compute matrices \(X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U\)
    end
5 for \(k=0\) to \(K-1\) do
6 Compute \(G\left(P_{k} ; X_{1}, \ldots, X_{d}\right)\) and \(\tilde{H}\left(P_{k} ; X_{1}, \ldots, X_{d}\right)\)
\(7 \quad\) Compute \(\mathcal{E}_{k}=-\left(\tilde{H}\left(P_{k}\right)+\beta I\right)^{-1} \cdot G\left(P_{k}\right)\)
\(8 \quad\) Backtracking \(\min _{\alpha} \mathcal{O}\left(\left(I+\alpha \mathcal{E}_{k}\right) P_{k}\right)\)
\(9 \quad\) Update \(P_{k+1}=\left(I+\alpha_{k} \mathcal{E}_{k}\right) P_{k}\)
10 end
11 Return \(x_{j, i}=-\frac{1}{2 \pi} \arg \left(P_{K}^{-1} X_{i} P_{K}\right)_{j j}, j=1, \ldots, r, \quad i=1, \ldots, d\)
12
```


Numerics

```
Algorithm 3:
Input: \(T_{n} \in \mathbb{C}^{N \times N}\) SDP, Toeplitz matrix, \(P_{0}=I_{r}\)
for \(i=1\) to \(d\) do
2 Compute svd \(T_{n-1}=U \Sigma U^{*}\) : tolerance \(\sigma_{k} \geqslant 10^{-3} \max (\sigma)\)
    Compute matrices \(X_{i}=\Sigma^{-1} U^{*} T_{n-1}^{(i)} U\)
    end
5 for \(k=0\) to \(N-1\) do
6 Compute \(G\left(P_{k} ; X_{1}, \ldots, X_{d}\right)\) and \(\tilde{H}\left(P_{k} ; X_{1}, \ldots, X_{d}\right)\)
\(7 \quad\) Compute \(\mathcal{E}_{k}=-\left(\tilde{H}\left(P_{k}\right)+\beta I\right)^{-1} \cdot G\left(P_{k}\right): \beta\) fixed
\(8 \quad\) Backtracking \(\min _{\alpha} \mathcal{O}\left(\left(I+\alpha \mathcal{E}_{k}\right) P_{k}\right): \alpha \leftarrow \alpha / 2\)
\(9 \quad\) Update \(P_{k+1}=\left(I+\alpha_{k} \mathcal{E}_{k}\right) P_{k}\)
10 end
11 Return \(x_{j, i}=-\frac{1}{2 \pi} \arg \left(P_{N}^{-1} X_{i} P_{N}\right)_{j j}, j=1, \ldots, r, \quad i=1, \ldots, d\)
12 Solve \(V(x) \cdot a=c\), prune \(a_{j}<10^{-3} \max (|a|)\)
```


Applications

$$
\begin{array}{lll}
0 & B & B \\
d & A & \infty
\end{array}
$$

Optimal transport

- We want to solve

$$
\min \int_{\mathbb{T}^{d} \times \mathbb{T}^{d}} c(x, y) \mathrm{d} \gamma(x, y) \quad \text { s.t. } \quad \gamma \in \Pi\left(\mu_{1}, \mu_{2}\right)
$$

- Using Lasserre's hierarchies (Lasserre, 2008), can be approximated by a SDP
- perform the extraction on the resulting matrix

Optimal transport

uniform distributions, $n=10$

Invariant measures

■ Discrete-time system: given a system $x_{t+1}=f\left(x_{t}\right)$, we want to find a measure μ such that $f_{\sharp} \mu=\mu$

- Logistic map, $x_{t+1}=r x_{t}\left(1-x_{t}\right)=: f\left(x_{t}\right)$
- We use Lasserre's hierarchies (Magron et al., 2019) to approximate

$$
\min J(\mu) \quad \text { s.t. } \quad f_{\sharp} \mu=\mu \quad \text { and } \quad \mathbb{E} \mu=1
$$

$$
r=2
$$

$$
r=3.6
$$

$$
r=4
$$

logistic map, $n=30$

Invariant measures

■ Dynamical system: given a system $\dot{x}(t)=u(x(t))$ we want to find a measure μ such that $\operatorname{div}(u \mu)=0$

- We consider the vector field u displayed below
- We use Lasserre's hierarchies to approximate

$$
\min J(\mu) \quad \text { s.t. } \quad \operatorname{div}(u \mu)=0 \quad \text { and } \quad \mathbb{E} \mu=1
$$

Conclusion

- Joint diagonalization step in algebraic extraction is crucial \rightarrow Dedicated solvers are key to make the procedure performant outside the theory

■ Work hand in hand with Lasserre's hierarchies to define an integrated workflow
■ application in optimal transport, invariant measures, ...
■ theoretical perspectives: convergence? geometrical interpretation?

Conclusion

- Joint diagonalization step in algebraic extraction is crucial \rightarrow Dedicated solvers are key to make the procedure performant outside the theory

■ Work hand in hand with Lasserre's hierarchies to define an integrated workflow

- application in optimal transport, invariant measures, ...

■ theoretical perspectives: convergence? geometrical interpretation?

Thank you for your attention!

References

Ablin, P., Cardoso, J.-F., and Gramfort, A. (2019). Beyond pham's algorithm for joint diagonalization. In ESANN.
Cardoso, J. and Souloumiac, A. (1996). Jacobi angles for simultaneous diagonalization. SIAM J. Mat. Anal. Appl., 17(1).
Curto, R. and Fialkow, L. (1996). Solution of the truncated complex moment problem for flat data. Memoirs of the AMS, (568).
Harmouch, J., Khalil, H., and Mourrain, B. (2017). Structured low rank decomposition of multivariate Hankel matrices. Linear Algebra and its Applications, 542:162-185.
Joho, M. and Rahbar, K. (2002). Joint diagonalization of correlation matrices by using newton methods with application to blind signal separation. In IEEE SAM, pages 403-407.
Klep, I., Povh, J., and Volčič, J. (2018). Minimizer extraction in polynomial optimization is robust. SIAM J. Optim., 28(4):3177-3207.
Kunis, S., Peter, T., Römer, T., and Von der Ohe, U. (2016). A multivariate generalization of Prony's method. Linear Algebra Appl., 490:31-47.
Lasserre, J. B. (2001). Global optimization with polynomials and the problem of moments. SIAM J. Optim., 11(3):796-817.
Lasserre, J.-B. (2008). A semidefinite approach to the generalized problem of moments. Math. Program., 112:65-92.
Laurent, M. (2010). Sums of squares, moment matrices and optimization over polynomials. In Emerging Applications of Algebraic Geometry, volume 149. Springer new York.

Magron, V., Forets, M., and Henrion, D. (2019). Semidefinite approximation of invariant measures for polynomial systems. Disc. Cont. Dyn. Sys., 24(12):6745-6770.
Mhaskar, H. N. (2019). Super-resolution meets machine learning: Approximation of measures. J. Fourier Anal. Appl., 25(6):3104-3122.
Möller, H. and Stetter, H. (1995). Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems. Numer. Math., 70:311-329.
Pauwels, E., Putinar, M., and Lasserre, J. (2020). Data analysis from empirical moments and the Christoffel function. F. Comp. Math.
R. de Prony, G. (1795). Essai expérimental et analytique: Sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures. Journal de l'École Polytechnique Floréal et Plairial, 1(cahier 22):24-76.

Roy, R., Paulraj, A., and Kailath, T. (1986). Esprit - a subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoustics Speech Signal Process., 34(5):1340-1342.
Sauer, T. (2017). Prony's method in several variables. Numer. Math., 136:411-438.
Stetter, H. (1996). Matrix eigenproblems are at the heart of polynomial system solving. ACM Sigsam Bulletin, 30(4):22-25.

