Off-the-Grid Wasserstein Group Lasso

Paul Catala ${ }^{1}$
Joint work with Vincent Duval ${ }^{2,3}$ and Gabriel Peyré ${ }^{1}$

${ }^{1}$ DMA, Ecole Normale Supérieure, PSL, CNRS
${ }^{2}$ Inria Paris
${ }^{3}$ CEREMADE, Université Paris-Dauphine, PSL, CNRS
FGS 2019, September 17-20, Nice

Motivation: Sparse Super-Resolution

Recover pointwise sources from low-resolution and noisy observations.

Astrophysics (2D)

Molecule fluorescence (3D)

Also neural spikes (1D), seismic imaging (1.5D), ...

Super-Resolution of Measures

Signal to recover: discrete positive Radon measure on d-dimensional torus \mathbb{T}^{d}

$$
\mu_{0}=\sum_{k=1}^{r} a_{k} \delta_{x_{k}} \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)
$$

Super-Resolution of Measures

Signal to recover: discrete positive Radon measure on d-dimensional torus \mathbb{T}^{d}

$$
\mu_{0}=\sum_{k=1}^{r} a_{k} \delta_{x_{k}} \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)
$$

Linear Fourier measurements:

$y=\mathcal{F}\left(\mu_{0}\right)+w \in \mathbb{C}^{n}$

$$
\mathcal{F}(\mu) \stackrel{\text { def. }}{=}\left(\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle k, x\rangle} \mathrm{d} \mu(x)\right)_{k \in \Omega_{c}}
$$

with $\Omega_{c} \stackrel{\text { def. }}{=} \llbracket-f_{c}, f_{c} \rrbracket^{d}$.
\Longleftrightarrow convolution with low-pass filter

Overview

Wasserstein-BLASSO

Off-the-Grid Solver: Semidefinite Relaxations

Support Recovery

Numerics

Wasserstein-BLASSO

Off-The-Grid Recovery

Inverse problem: $y=\mathcal{F}\left(\mu_{0}\right)+w \in \mathbb{C}^{n}$
Grid-free regularization: total variation (TV) of measures

$$
\begin{gathered}
|\mu|\left(\mathbb{T}^{d}\right)=\sup \left\{\int_{\mathbb{T}^{d}} \eta \mathrm{~d} \mu ; \eta \in \mathcal{C}\left(\mathbb{T}^{d}\right) \text { and }\|\eta\|_{\infty} \leqslant 1\right\} \\
\left|\left|\mid\left(\mathbb{T}^{d}\right)=\|a\|_{\ell^{1}}\right.\right.
\end{gathered}
$$

For positive measures, $|\mu|\left(\mathbb{T}^{d}\right)=\mu\left(\mathbb{T}^{d}\right)$

BLASSO (Azaïs et al. [2015])

$$
\min _{\mu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)} \frac{1}{2}\|y-\mathcal{F}(\mu)\|^{2}+\lambda \mu\left(\mathbb{T}^{d}\right)
$$

Multi-Task Off-the-Grid Recovery
Inverse problem: $u=\mathcal{F}\left(\mu_{0}\right)+w \quad$ and $\quad v=\mathcal{F}\left(\nu_{0}\right)+\varepsilon, \quad \mu_{0} \simeq \nu_{0}$

Multi-Task Off-the-Grid Recovery

Inverse problem: $u=\mathcal{F}\left(\mu_{0}\right)+w \quad$ and $\quad v=\mathcal{F}\left(\nu_{0}\right)+\varepsilon, \quad \mu_{0} \simeq \nu_{0}$

regularization: TV + Wasserstein (Janati et al. [2018])

$$
\mathcal{W}_{c}(\mu, \nu)=\min _{\gamma \in \mathcal{M}_{+}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)}\left\{\int_{\mathbb{T}^{d} \times \mathbb{T}^{d}} c \mathrm{~d} \gamma ; \pi_{1} \gamma=\mu \quad \text { and } \quad \pi_{2} \gamma=\nu\right\}
$$

Wasserstein-BLASSO

$$
\min _{\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)} \frac{1}{2}\|u-\mathcal{F}(\mu)\|^{2}+\lambda \mu\left(\mathbb{T}^{d}\right)+\frac{1}{2}\|v-\mathcal{F}(\nu)\|^{2}+\lambda \nu\left(\mathbb{T}^{d}\right)+\tau \mathcal{W}_{c}(\mu, \nu)
$$

Off-the-grid extension of Janati et al. [2018]

Semidefinite Hierarchies

Lasserre [2001], Parrilo [2003], Dumitrescu [2017]

Moment Matrices

Let $\Omega_{\ell}=\llbracket 0, \ell \rrbracket^{d}, \ell \geqslant f_{c}$, and $m=(\ell+1)^{d}$.
Definition (Moment matrices) Given $\nu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that

$$
R(\nu)_{k, l}=\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle k-l, x\rangle} \mathrm{d} \nu(x) \quad \forall k, l \in \Omega_{\ell}
$$

Moment Matrices

Let $\Omega_{\ell}=\llbracket 0, \ell \rrbracket^{d}, \ell \geqslant f_{c}$, and $m=(\ell+1)^{d}$.
Definition (Moment matrices) Given $\nu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that

$$
R(\nu)_{k, l}=\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle k-l, x\rangle} \mathrm{d} \nu(x) \quad \forall k, l \in \Omega_{\ell}
$$

Definition (Generalized Toeplitz matrices \mathcal{T}_{m}) $R \in \mathcal{T}_{m}$ if for every multiindices $j, k, l \in \Omega_{\ell}$ such that $\|k+j\|_{\infty} \leqslant \ell$ and $\|I+j\|_{\infty} \leqslant \ell$,

$$
R_{k+j, l+j}=R_{k, l} \stackrel{\text { def. }}{=} z_{k-1}
$$

In this case, we write $R=\operatorname{Toep}(z)$

Moment Matrices

Let $\Omega_{\ell}=\llbracket 0, \ell \rrbracket^{d}, \ell \geqslant f_{c}$, and $m=(\ell+1)^{d}$.
Definition (Moment matrices) Given $\nu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that

$$
R(\nu)_{k, l}=\int_{\mathbb{T}^{d}} e^{-2 i \pi\langle k-l, x\rangle} \mathrm{d} \nu(x) \quad \forall k, l \in \Omega_{\ell}
$$

Definition (Generalized Toeplitz matrices \mathcal{T}_{m}) $R \in \mathcal{T}_{m}$ if for every multiindices $j, k, l \in \Omega_{\ell}$ such that $\|k+j\|_{\infty} \leqslant \ell$ and $\|I+j\|_{\infty} \leqslant \ell$,

$$
R_{k+j, I+j}=R_{k, I} \stackrel{\text { def. }}{=} z_{k-I}
$$

In this case, we write $R=\operatorname{Toep}(z)$

- $R(\nu) \in \mathcal{T}_{m}$
- If $\nu \geqslant 0, R(\nu) \succeq 0$
- If $\nu=\sum a_{i} \delta_{x_{i}}, R(\nu)=\sum a_{i} e\left(x_{i}\right) e\left(x_{i}\right)^{*}$, with $e(x)=\left[e^{-2 i \pi\langle k, x\rangle}\right]_{k \in \Omega_{\ell}}$

Example: OT

$$
\mathcal{W}_{c}(\mu, \nu)=\min _{\gamma \in \mathcal{M}_{+}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)} \int c \mathrm{~d} \gamma \text { s.t. } \quad\left\{\begin{array}{l}
\pi_{1} \gamma=\mu \\
\pi_{2} \gamma=\nu
\end{array}\right.
$$

- assume cost is a trigonometric polynomial: $c=\sum_{k} \hat{c}_{k} e^{-2 i \pi\langle k, x\rangle}$
- \mathcal{W}_{c} only involves trigonometric moments of $\gamma(\gamma \geqslant 0)$
- Replace measures by (infinite) moment sequences ...
- ... truncate these sequences ...
- ... they will satisfy (necessary) PSD constraints

Example: OT

$$
\mathcal{W}_{c}(\mu, \nu)=\min _{\gamma \in \mathcal{M}_{+}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)} \int c \mathrm{~d} \gamma \quad \text { s.t. } \quad\left\{\begin{array}{l}
\pi_{1} \gamma=\mu \\
\pi_{2} \gamma=\nu
\end{array}\right.
$$

- assume cost is a trigonometric polynomial: $c=\sum_{k} \hat{c}_{k} e^{-2 i \pi\langle k, x\rangle}$
- \mathcal{W}_{c} only involves trigonometric moments of $\gamma(\gamma \geqslant 0)$
- Replace measures by (infinite) moment sequences ...
- ... truncate these sequences ...
- ... they will satisfy (necessary) PSD constraints
«Change of variable:

$$
\begin{aligned}
& z=\mathcal{F}_{2}(\gamma), \quad \text { i.e. } \quad z_{(s, t)}=\int_{\mathbb{T}^{d} \times \mathbb{T}^{d}} e^{-2 i \pi\langle s, x\rangle} e^{-2 i \pi\langle t, y\rangle} \mathrm{d} \gamma(x, y) \\
& z_{1}=\mathcal{F}\left(\pi_{1} \gamma\right)=z_{(\cdot, 0)}, \quad \text { and } \quad z_{2}=\mathcal{F}\left(\pi_{2} \gamma\right)=z_{(0, \cdot)} \quad 》
\end{aligned}
$$

Moment relaxation at order $\ell \quad\left(m=(\ell+1)^{d}\right)$

$$
\min _{z \in \mathbb{C}^{(2 m-1) \times(2 m-1)}}\langle\hat{c}, z\rangle \quad \text { s.t. }\left\{\begin{array}{l}
\operatorname{Toep}(z) \succeq 0 \\
z_{1}=u \\
z_{2}=v
\end{array}\right.
$$

SDP hierarchy for Wasserstein-BLASSO

$$
\min _{\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{T}^{d}\right)} \frac{1}{2}\|u-\mathcal{F}(\mu)\|^{2}+\lambda \mu\left(\mathbb{T}^{d}\right)+\frac{1}{2}\|\nu-\mathcal{F}(\nu)\|^{2}+\lambda \nu\left(\mathbb{T}^{d}\right)+\tau \mathcal{W}_{c}(\mu, \nu)
$$

$\mathbb{\imath}$ reformulation over product measures

$$
\min _{\gamma \in \mathcal{M}+\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)} \frac{1}{2}\left\|u-\mathcal{F}\left(\pi_{1} \gamma\right)\right\|^{2}+\frac{1}{2}\left\|v-\mathcal{F}\left(\pi_{2} \gamma\right)\right\|^{2}+2 \lambda \gamma\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)+\tau\langle c, \gamma\rangle
$$

\Downarrow semidefinite relaxation

Moment relaxation at order ℓ

$$
\begin{aligned}
\min _{z \in \mathbb{C}(2 m-1) \times(2 m-1)} & \frac{1}{2}\left\|u-z_{1}\right\|^{2}+\frac{1}{2}\left\|v-z_{2}\right\|^{2}+2 \lambda z_{0}+\tau\langle\hat{c}, z\rangle \\
\text { s.t. } & \operatorname{Toep}(z) \succeq 0
\end{aligned}
$$

Convergence of the hierarchy

Prop. For $\ell \geqslant f_{c}, \min \left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right) \leqslant \min \left(\mathcal{P}_{\lambda, \tau}^{(\ell+1)}\right) \leqslant \min \left(\mathcal{P}_{\lambda, \tau}\right)$. Moreover, $\lim _{\ell \rightarrow \infty} \min \left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda, \tau}\right)$

Prop. (Collapsing) Let $\ell \geqslant f_{c}$. Then $\min \left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right)=\min \left(\mathcal{P}_{\lambda, \tau}\right)$ iff there exist z solution to $\left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right)$ and γ solution to $\left(\mathcal{P}_{\lambda, \tau}\right)$ st $z=\mathcal{F}_{2}(\gamma)$ (z be the moments of γ).

We know how to detect collapsing via flatness criterion (:= recurrence relations between columns of $\operatorname{Toep}(z)$) Curto and Fialkow [1996]

Low-Rank Solver for $\left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right)$

Proposition

In the case of collapsing, $\left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right)$ always admits a solution z such that rank Toep $(z) \leqslant r, r$ being the number of spikes in a solution of $\left(\mathcal{P}_{\lambda, \tau}^{(\ell)}\right)$.

Proof.

Results from the fact that if $\gamma=\sum_{i=1}^{r} a_{i} \delta_{x_{i}}$, then rank $R(\gamma) \leqslant r$.
\Rightarrow efficient FFT-based Frank-Wolfe solver (C.,Duval,Peyré [2019])
Efficient storage: $\operatorname{Toep}(z)=U U^{H}+3$ steps algorithm:

1. linear minimization $S^{\star}=\min \left\langle\nabla f\left(U U^{H}\right), S\right\rangle$ very low cost
2. linesearch: $U=\alpha U+\beta S^{\star}$
3. BFGS step on U to minimize $f\left(U U^{H}\right)$ low cost

Support Recovery

Sparse Recovery with Prony

Let $R=R(\gamma)=\operatorname{Toep}(z)$

$$
\begin{aligned}
p \in \operatorname{Ker} R \Rightarrow p^{*} R p=0 & \Rightarrow \int_{\mathbb{T}^{d}}\left|\sum_{k} p_{k} e^{2 i \pi\langle k, x\rangle}\right|^{2} \mathrm{~d} \gamma(x)=0 \\
& \Rightarrow \operatorname{Supp} \gamma \subset\left\{x \in \mathbb{T}^{d} ; p(x)=0\right\}
\end{aligned}
$$

Let $\langle\operatorname{Ker} R\rangle \stackrel{\text { def. }}{=}$ ideal generated by $\operatorname{Ker} R$
Theorem (see e.g. Laurent [2010]) If the flatness criterion holds, then

$$
\text { Supp } \gamma=\left\{x \in \mathbb{T}^{d} ; p(x)=0 \quad \forall p \in\langle\operatorname{Ker} R\rangle\right\}
$$

Solving system of polynomial equations \Rightarrow (multivariate) Prony's method
Based on joint diagonalization (Harmouch et al. [2017], Josz et al. [2017]) - in 1-D, $\langle\operatorname{Ker} R\rangle=\langle p\rangle$, root-finding \Leftrightarrow eigenvalues of companion matrix

- in d-D, joint diagonalization of (commuting) "multiplication matrices"

Approximate joint diagonalization
use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix
support \subset level sets

Recovering non-atomic measures

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix
support \subset level sets

Recovering non-atomic measures

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix
support \subset level sets

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix

support \subset level sets

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix
support \subset level sets

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix
support \subset level sets

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices
return a discrete measure

Christoffel polynomial
Pauwels and Lasserre [2019]
use regularized inverse of moment matrix
support \subset level sets

Simulations

Simulations

Wasserstein cost: $\sin ^{2}(x-y)$

Simulations

Multi observations penalization: $\sum_{k} \mathcal{W}_{c}\left(\mu_{k}, \mu_{b}\right)$

Conclusion

- off-the-grid solver for the multi-task super-resolution problem
- using the Wasserstein penalization introduced by Janati et al. [2018]
- and Lasserre's hierarchy
- Future lines of work:
- extension to unbalanced transport
- Lasserre's hierarchy for curve recovery

Thank You!

J. M. Azaïs, Y. de Castro, and F. Gamboa. Spike detection from inaccurate sampling. Applied and Computational Harmonic Analysis, 38(2):177-195, 2015.
R.E. Curto and L.A. Fialkow. Solution of the truncated complex moment problem for flat data. Memoirs of the AMS, (568), 1996.
B. A. Dumitrescu. Positive trigonometric Polynomials and Signal Processing Applications. Signals and Communication Technology. Springer International Publishing, 2017.
J. Harmouch, H. Khalil, and B. Mourrain. Structured low rank decomposition of multivariate Hankel matrices. Linear Algebra and its Applications, 542:162 185, 2017.
H. Janati, M. Cuturi, and A. Gramfort. Wasserstein regularization for sparse multi-task regression. ArXiv e-prints, 2018.
C. Josz, J.B. Lasserre, and B. Mourrain. Sparse polynomial interpolation: Compressed sensing, super resolution, or prony? arXiv:1708.06187, 2017.
J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.
M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging Applications of Algebraic Geometry, volume 149. Springer new York, 2010.
P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, 96(2):293-320, 2003.
E. Pauwels and J.B. Lasserre. The empirical christoffel function with applications in data analysis. Advances in Computational Mathematics, 45 (3):1439-1468, 2019.

