Off-the-Grid Wasserstein Group Lasso

 ${\it Paul Catala}^{\ 1} \\ {\it Joint work with Vincent Duval}^{\ 2,3} \ {\it and Gabriel Peyré}^{\ 1}$

¹DMA, Ecole Normale Supérieure, PSL, CNRS

²Inria Paris

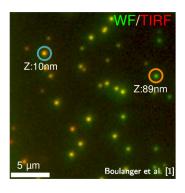
³CEREMADE, Université Paris-Dauphine, PSL, CNRS

FGS 2019, September 17-20, Nice

Motivation: Sparse Super-Resolution

Recover pointwise sources from low-resolution and noisy observations.

Astrophysics (2D)



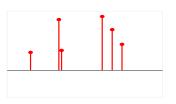
Molecule fluorescence (3D)

Also neural spikes (1D), seismic imaging (1.5D), ...

Super-Resolution of Measures

Signal to recover: discrete positive Radon measure on d-dimensional torus \mathbb{T}^d

$$\mu_0 = \sum_{k=1}^r a_k \delta_{x_k} \in \mathcal{M}_+(\mathbb{T}^d)$$



Super-Resolution of Measures

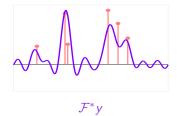
Signal to recover: discrete positive Radon measure on d-dimensional torus \mathbb{T}^d

$$\mu_0 = \sum_{k=1}^r a_k \delta_{x_k} \in \mathcal{M}_+(\mathbb{T}^d)$$

Linear Fourier measurements:

$$y = \mathcal{F}(\mu_0) + w \in \mathbb{C}^n$$

$$\mathcal{F}(\mu) \stackrel{\mathsf{def.}}{=} \left(\int_{\mathbb{T}^d} e^{-2i\pi\langle k, x \rangle} \mathrm{d}\mu(x) \right)_{k \in \Omega_c}$$



with
$$\Omega_c \stackrel{\text{def.}}{=} [-f_c, f_c]^d$$
.

⇔ convolution with low-pass filter

Overview

Wasserstein-BLASSO

Off-the-Grid Solver: Semidefinite Relaxations

Support Recovery

Numerics

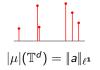
Wasserstein-BLASSO

Off-The-Grid Recovery

Inverse problem: $y = \mathcal{F}(\mu_0) + w \in \mathbb{C}^n$

Grid-free regularization: total variation (TV) of measures

$$|\mu|(\mathbb{T}^d) = \sup \left\{ \int_{\mathbb{T}^d} \eta \mathrm{d} \mu \; ; \; \eta \in \mathcal{C}(\mathbb{T}^d) \quad \mathsf{and} \quad \|\eta\|_\infty \leqslant 1
ight\}$$

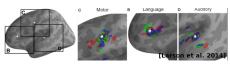


For positive measures, $|\mu|(\mathbb{T}^d) = \mu(\mathbb{T}^d)$

$$\min_{\mu \in \mathcal{M}_{+}(\mathbb{T}^{d})} \frac{1}{2} \|y - \mathcal{F}(\mu)\|^{2} + \lambda \mu(\mathbb{T}^{d})$$

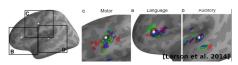
Multi-Task Off-the-Grid Recovery

<u>Inverse problem</u>: $u = \mathcal{F}(\mu_0) + w$ and $v = \mathcal{F}(\nu_0) + \varepsilon$, $\mu_0 \simeq \nu_0$



Multi-Task Off-the-Grid Recovery

Inverse problem: $u = \mathcal{F}(\mu_0) + w$ and $v = \mathcal{F}(\nu_0) + \varepsilon$, $\mu_0 \simeq \nu_0$



regularization: TV + Wasserstein (Janati et al. [2018])

$$\mathcal{W}_{c}(\mu,\nu) = \min_{\gamma \in \mathcal{M}_{+}(\mathbb{T}^{d} \times \mathbb{T}^{d})} \; \left\{ \int_{\mathbb{T}^{d} \times \mathbb{T}^{d}} c \mathrm{d}\gamma \; ; \; \pi_{1}\gamma = \mu \quad \text{and} \quad \pi_{2}\gamma = \nu \right\}$$

$$\min_{\mu,\nu\in\mathcal{M}_{+}(\mathbb{T}^{d})} \frac{1}{2} \|\boldsymbol{u} - \mathcal{F}(\mu)\|^{2} + \lambda\mu(\mathbb{T}^{d}) + \frac{1}{2} \|\boldsymbol{v} - \mathcal{F}(\nu)\|^{2} + \lambda\nu(\mathbb{T}^{d}) + \tau\mathcal{W}_{c}(\mu,\nu)$$

$$(\mathcal{P}_{\lambda,\tau})$$

Off-the-grid extension of Janati et al. [2018]

Semidefinite Hierarchies

Lasserre [2001], Parrilo [2003], Dumitrescu [2017]

Moment Matrices

Let $\Omega_{\ell} = [0, \ell]^d$, $\ell \geqslant f_c$, and $m = (\ell + 1)^d$.

Definition (Moment matrices) Given $\nu \in \mathcal{M}_+(\mathbb{T}^d)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that

$$R(\nu)_{k,l} = \int_{\mathbb{T}^d} e^{-2i\pi\langle k-l,x\rangle} d\nu(x) \quad \forall k,l \in \Omega_\ell$$

Moment Matrices

Let $\Omega_{\ell} = \llbracket 0, \ell \rrbracket^d$, $\ell \geqslant f_c$, and $m = (\ell + 1)^d$.

Definition (Moment matrices) Given $\nu \in \mathcal{M}_+(\mathbb{T}^d)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that

$$R(\nu)_{k,l} = \int_{\mathbb{T}^d} e^{-2i\pi\langle k-l,x\rangle} d\nu(x) \quad \forall k,l \in \Omega_\ell$$

Definition (Generalized Toeplitz matrices \mathcal{T}_m) $R \in \mathcal{T}_m$ if for every multiindices $j,k,l \in \Omega_\ell$ such that $\|k+j\|_\infty \leqslant \ell$ and $\|l+j\|_\infty \leqslant \ell$,

$$R_{k+j,l+j} = R_{k,l} \stackrel{\text{def.}}{=} z_{k-l}$$

In this case, we write R = Toep(z)

Moment Matrices

Let $\Omega_{\ell} = \llbracket 0, \ell \rrbracket^d$, $\ell \geqslant f_c$, and $m = (\ell + 1)^d$.

Definition (Moment matrices) Given $\nu \in \mathcal{M}_+(\mathbb{T}^d)$, the moment matrix of order ℓ of ν is the matrix $R(\nu) \in \mathbb{C}^{m \times m}$ such that

$$R(
u)_{k,l} = \int_{\mathbb{T}^d} \mathrm{e}^{-2i\pi\langle k-l,x
angle} \mathrm{d}
u(x) \quad orall k,l \in \Omega_\ell$$

Definition (Generalized Toeplitz matrices \mathcal{T}_m) $R \in \mathcal{T}_m$ if for every multiindices $j, k, l \in \Omega_\ell$ such that $||k + j||_{\infty} \le \ell$ and $||l + j||_{\infty} \le \ell$,

$$\left| R_{k+j,l+j} = R_{k,l} \right| \stackrel{\text{def.}}{=} z_{k-l}$$

In this case, we write R = Toep(z)

- $R(\nu) \in \mathcal{T}_m$
- If $\nu \geqslant 0$, $R(\nu) \succ 0$
- If $\nu \geqslant 0$, $R(\nu) \subseteq 0$ • If $\nu = \sum a_i \delta_{x_i}$, $R(\nu) = \sum a_i e(x_i) e(x_i)^*$, with $e(x) = [e^{-2i\pi\langle k, x \rangle}]_{k \in \Omega_\ell}$

Example: OT

$$\mathcal{W}_c(\mu, \nu) = \min_{\gamma \in \mathcal{M}_+(\mathbb{T}^d \times \mathbb{T}^d)} \int c d\gamma \quad \text{s.t.} \quad \begin{cases} \pi_1 \gamma = \mu \\ \pi_2 \gamma = \nu \end{cases}$$

- assume cost is a trigonometric polynomial: $c=\sum_{\mathbf{k}}\hat{c}_{\mathbf{k}}e^{-2i\pi\langle k,x
 angle}$
- \mathcal{W}_c only involves trigonometric moments of γ $(\gamma \geqslant 0)$
- Replace measures by (infinite) moment sequences ...
- ... truncate these sequences ...
- ... they will satisfy (necessary) PSD constraints

Example: OT

$$\mathcal{W}_c(\mu, \nu) = \min_{\gamma \in \mathcal{M}_+(\mathbb{T}^d \times \mathbb{T}^d)} \int c d\gamma \quad \text{s.t.} \quad \begin{cases} \pi_1 \gamma = \mu \\ \pi_2 \gamma = \nu \end{cases}$$

- assume cost is a trigonometric polynomial: $c=\sum_{m{\iota}}\hat{c}_k e^{-2i\pi\langle k, {m{x}}
 angle}$
- W_c only involves trigonometric moments of γ ($\gamma \ge 0$) Replace measures by (infinite) moment sequences ...
- ... truncate these sequences ...
- ... they will satisfy (necessary) PSD constraints

«Change of variable:

$$z = \mathcal{F}_2(\gamma), \quad i.e. \ \ z_{(s,t)} = \int_{\mathbb{T}^d imes \mathbb{T}^d} e^{-2i\pi\langle s, x \rangle} e^{-2i\pi\langle t, y \rangle} \mathrm{d}\gamma(x,y)$$
 $z_1 = \mathcal{F}(\pi_1 \gamma) = z_{(\cdot,0)}, \quad \text{and} \quad z_2 = \mathcal{F}(\pi_2 \gamma) = z_{(0,\cdot)} \quad imes$

Moment relaxation at order ℓ $(m = (\ell + 1)^d)$

$$\min_{z \in \mathbb{C}^{(2m-1)\times(2m-1)}} \langle \hat{c}, z \rangle \quad \text{s.t.} \begin{cases} \text{Toep}(z) \succeq 0 \\ z_1 = u \\ z_2 = v \end{cases}$$
 (OT^(\ell))

SDP hierarchy for Wasserstein-BLASSO

$$\min_{\mu,\nu\in\mathcal{M}_+(\mathbb{T}^d)} \frac{1}{2} \|u - \mathcal{F}(\mu)\|^2 + \lambda \mu(\mathbb{T}^d) + \frac{1}{2} \|v - \mathcal{F}(\nu)\|^2 + \lambda \nu(\mathbb{T}^d) + \tau \mathcal{W}_c(\mu,\nu)$$

\$\psi\$ reformulation over product measures

$$\min_{\gamma \in \mathcal{M}_{+}(\mathbb{T}^{d} \times \mathbb{T}^{d})} \frac{1}{2} \|u - \mathcal{F}(\pi_{1}\gamma)\|^{2} + \frac{1}{2} \|v - \mathcal{F}(\pi_{2}\gamma)\|^{2} + 2\lambda\gamma(\mathbb{T}^{d} \times \mathbb{T}^{d}) + \tau\langle c, \gamma \rangle$$

↓ semidefinite relaxation

Moment relaxation at order ℓ

$$\min_{\substack{z \in \mathbb{C}^{(2m-1)\times(2m-1)} \\ \text{s.t.}}} \frac{1}{2} \|u - z_1\|^2 + \frac{1}{2} \|v - z_2\|^2 + 2\lambda z_0 + \tau \langle \hat{c}, z \rangle \\
\text{s.t.} \quad \text{Toep}(z) \succeq 0$$

Convergence of the hierarchy

Prop. For $\ell \geqslant f_c$, $\min(\mathcal{P}_{\lambda,\tau}^{(\ell)}) \leqslant \min(\mathcal{P}_{\lambda,\tau}^{(\ell+1)}) \leqslant \min(\mathcal{P}_{\lambda,\tau})$. Moreover, $\lim_{\ell \to \infty} \min(\mathcal{P}_{\lambda,\tau}^{(\ell)}) = \min(\mathcal{P}_{\lambda,\tau})$

Prop. (Collapsing) Let $\ell \geqslant f_c$. Then $\min (\mathcal{P}_{\lambda,\tau}^{(\ell)}) = \min (\mathcal{P}_{\lambda,\tau})$ iff there exist z solution to $(\mathcal{P}_{\lambda,\tau}^{(\ell)})$ and γ solution to $(\mathcal{P}_{\lambda,\tau})$ st $z = \mathcal{F}_2(\gamma)$ (z be the moments of γ).

We know how to detect collapsing via flatness criterion (:= recurrence relations between columns of Toep(z)) Curto and Fialkow [1996]

Low-Rank Solver for $(\mathcal{P}_{\lambda,\tau}^{(\ell)})$

Proposition

In the case of collapsing, $(\mathcal{P}_{\lambda,\tau}^{(\ell)})$ always admits a solution z such that rank $\operatorname{Toep}(z) \leqslant r$, r being the number of spikes in a solution of $(\mathcal{P}_{\lambda,\tau}^{(\ell)})$.

Proof.

Results from the fact that if $\gamma = \sum_{i=1}^{r} a_i \delta_{x_i}$, then rank $R(\gamma) \leqslant r$.

⇒ efficient FFT-based Frank-Wolfe solver (C.,Duval,Peyré [2019])

Efficient storage: $Toep(z) = UU^H + 3$ steps algorithm:

- 1. linear minimization $S^* = \min \langle \nabla f(UU^H), S \rangle$ very low cost
- 2. linesearch: $U = \alpha U + \beta S^*$
- 3. BFGS step on U to minimize $f(UU^H)$ low cost

Support Recovery

Sparse Recovery with Prony

Let
$$R = R(\gamma) = \text{Toep}(z)$$

$$p \in \operatorname{Ker} R \Rightarrow p^* R p = 0 \Rightarrow \int_{\mathbb{T}^d} \left| \sum_k p_k e^{2i\pi\langle k, x \rangle} \right|^2 d\gamma(x) = 0$$

 $\Rightarrow \operatorname{Supp} \gamma \subset \left\{ x \in \mathbb{T}^d \; ; \; p(x) = 0 \right\}$

Let $\langle \operatorname{Ker} R \rangle \stackrel{\text{def.}}{=} \operatorname{ideal} \operatorname{generated} \operatorname{by} \operatorname{Ker} R$

Theorem (see e.g. Laurent [2010]) If the flatness criterion holds, then
$$\operatorname{Supp} \gamma = \left\{ x \in \mathbb{T}^d \; ; \; p(x) = 0 \quad \forall p \in \langle \operatorname{Ker} R \rangle \right\}$$

Solving system of polynomial equations \Rightarrow (multivariate) Prony's method

Based on joint diagonalization (Harmouch et al. [2017], Josz et al. [2017]) - in 1-D, $\langle \operatorname{Ker} R \rangle = \langle p \rangle$, root-finding \Leftrightarrow eigenvalues of companion matrix

- in d-D, joint diagonalization of (commuting) "multiplication matrices"

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices

return a discrete measure

Christoffel polynomial

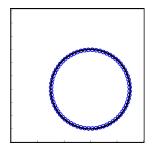
Pauwels and Lasserre [2019]

use regularized inverse of moment matrix

Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices

return a discrete measure

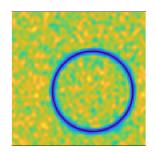


Christoffel polynomial

Pauwels and Lasserre [2019]

use regularized inverse of moment matrix

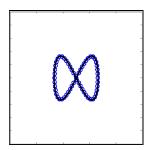
 $support \subset level sets$



Approximate joint diagonalization

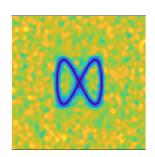
use optimization scheme to find best co-diagonalization basis for multiplication matrices

return a discrete measure



Christoffel polynomial Pauwels and Lasserre [2019]

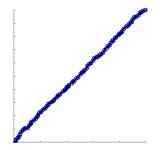
use regularized inverse of moment matrix



Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices

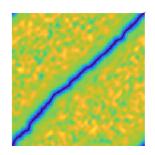
return a discrete measure



Christoffel polynomial Pauwels and Lasserre [2019]

use regularized inverse of moment matrix

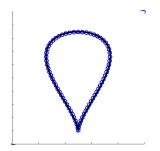
 $support \subset level sets$



Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices

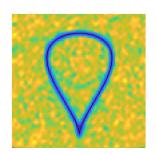
return a discrete measure



Christoffel polynomial

Pauwels and Lasserre [2019]

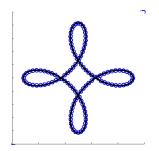
use regularized inverse of moment matrix



Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices

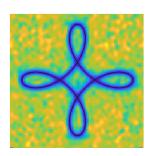
return a discrete measure



Christoffel polynomial

Pauwels and Lasserre [2019]

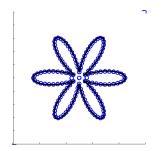
use regularized inverse of moment matrix



Approximate joint diagonalization

use optimization scheme to find best co-diagonalization basis for multiplication matrices

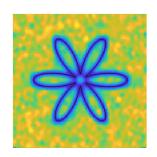
return a discrete measure



Christoffel polynomial

Pauwels and Lasserre [2019]

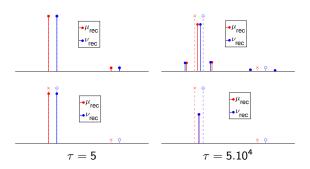
use regularized inverse of moment matrix



Simulations

Simulations

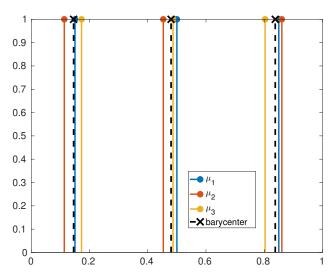
Wasserstein cost: $\sin^2(x - y)$



noiseless case, $\lambda=10^{-2}$ (top) and $\lambda=1$ (bottom)

Simulations

Multi observations penalization: $\sum_k \mathcal{W}_c(\mu_k, \mu_b)$



Conclusion

- off-the-grid solver for the multi-task super-resolution problem
- using the Wasserstein penalization introduced by Janati et al. [2018]
- and Lasserre's hierarchy
- Future lines of work:
 - extension to unbalanced transport
 - Lasserre's hierarchy for curve recovery

Thank You!

- J. M. Azaïs, Y. de Castro, and F. Gamboa. Spike detection from inaccurate sampling. *Applied and Computational Harmonic Analysis*, 38(2):177–195, 2015.
- R.E. Curto and L.A. Fialkow. Solution of the truncated complex moment problem for flat data. *Memoirs of the AMS*, (568), 1996.
 B. A. Dumitrescu. *Positive trigonometric Polynomials and Signal Processing*
- Applications. Signals and Communication Technology. Springer International Publishing, 2017.J. Harmouch, H. Khalil, and B. Mourrain. Structured low rank decomposition of
- multivariate Hankel matrices. *Linear Algebra and its Applications*, 542:162 185, 2017.

 H. Janati, M. Cuturi, and A. Gramfort. Wasserstein regularization for sparse
- multi-task regression. *ArXiv e-prints*, 2018.

 C. Josz, J.B. Lasserre, and B. Mourrain. Sparse polynomial interpolation:
- C. Josz, J.B. Lasserre, and B. Mourrain. Sparse polynomial interpolation: Compressed sensing, super resolution, or prony? *arXiv:1708.06187*, 2017.
- J. B. Lasserre. Global optimization with polynomials and the problem of moments. *SIAM Journal on Optimization*, 11(3):796–817, 2001.
- M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In *Emerging Applications of Algebraic Geometry*, volume 149. Springer new York, 2010.

- P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. *Mathematical Programming*, 96(2):293–320, 2003.
- E. Pauwels and J.B. Lasserre. The empirical christoffel function with applications in data analysis. *Advances in Computational Mathematics*, 45 (3):1439–1468, 2019.