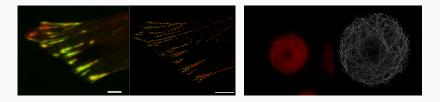
Approximating Singular Measures on the Torus with Moment Polynomials

Paul Catala. Joint work with M. Hockmann, S. Kunis and M. Wageringel University of Osnabrück. Curves and Surfaces, 24.06.22

Super-resolution. Estimate a signal from a few coarse linear measurements



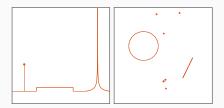
- Ubiquitous problem in imaging and data science (low-pass filtering)
 - Fluorescence microscopy
 - X-ray crystallography
 - Astronomical imaging
 - Mixture estimation
- Signals of interest are often structured: pointwise sources, curves, surfaces...

⁰images from the cell image library (http://cellimagelibrary.org/)

Data model

Radon measures $d \in \mathbb{N} \setminus \{0\}, \ \mathbb{T} \stackrel{\text{def.}}{=} \mathbb{R}/\mathbb{Z}$ Torus,

 $\mu\in\mathcal{M}(\mathbb{T}^d)$



Singular measures μ

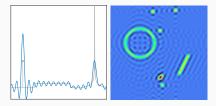
Data model

Radon measures $d \in \mathbb{N} \setminus \{0\}, \mathbb{T} \stackrel{\text{def.}}{=} \mathbb{R}/\mathbb{Z}$ Torus, $\mu \in \mathcal{M}(\mathbb{T}^d)$.

Singular measures μ

Trigonometric moments $k \in \Omega \subset \mathbb{Z}^d$, typically $\Omega = \{-n, \dots, n\}^d$

$$\hat{\mu}(k) \stackrel{ ext{def.}}{=} \int_{\mathbb{T}^d} e^{-2\imath \pi \langle k,\,x
angle} \mathrm{d}\mu(x)$$



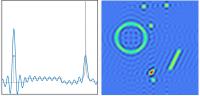
Fourier partial sum $S_n\mu$ (n = 20)

Data model

Radon measures $d \in \mathbb{N} \setminus \{0\}, \mathbb{T} \stackrel{\text{def.}}{=} \mathbb{R}/\mathbb{Z}$ Torus, $\mu \in \mathcal{M}(\mathbb{T}^d)$ ٠ Singular measures μ

Trigonometric moments $k \in \Omega \subset \mathbb{Z}^d$, typically $\Omega = \{-n, \dots, n\}^d$

$$\hat{\mu}(k) \stackrel{ ext{def.}}{=} \int_{\mathbb{T}^d} e^{-2\imath \pi \langle k, \, x
angle} \mathrm{d} \mu(x)$$



Fourier partial sum $S_n\mu$ (n = 20)

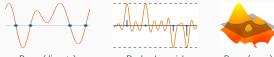
How can we recover μ from $\{\hat{\mu}(k)\}, k \in \{-n, \dots, n\}^d$?

- For discrete measures \rightarrow "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete)

Dual polynomial

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]



Pronv (discrete)

Dual polynomial

Prony (curve)

- For general measures,
 - FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete)

Dual polynomial

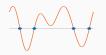
Prony (curve)

Approximation

For general measures,

- FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)
- Polynomial approximations [Mhaskar, 2019]
- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

- For discrete measures → "interpolation"
 - Prony's method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC [Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].
 - Off-the-grid optimization [Candès and Fernandez-Granda, 2014]



Prony (discrete)

Dual polynomial Prony (curve)

Approximation

- For general measures,
 - FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)
 - Polynomial approximations [Mhaskar, 2019]
 - Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]
- In this work:
 - easily computable polynomial approximations, with sharp rates in W_1 metric (similarities with [Mhaskar, 2019], use of different distance between measures)
 - easily computable polynomial interpolant for algebraic varieties

- 1. Preliminaries
- 2. Polynomial Approximations in Wasserstein-1
- 3. Polynomial Interpolation
- 4. Numerical illustrations
- 5. Conclusion

Preliminaries

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in \{-n, \dots, n\}^d$, we define the moment matrix $T_n \stackrel{\text{def.}}{=} \begin{bmatrix} \hat{\mu}(k-1) \end{bmatrix}$

$$T_n \stackrel{\text{\tiny def.}}{=} \left[\hat{\mu}(k-l) \right]_{k,l \in \{0,\ldots,n\}^d}.$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in \{-n, \dots, n\}^d$, we define the moment matrix $T_n \stackrel{\text{def.}}{=} \begin{bmatrix} \hat{\mu}(k-l) \end{bmatrix}$

$$T_n \stackrel{\text{def}}{=} \left[\hat{\mu}(k-l) \right]_{k,l \in \{0,\ldots,n\}^d}.$$

■ central in parametric approaches (Prony, ESPRIT, MUSIC, ...)

■ important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

One important difference between the discrete and non-discrete cases

If $\mu = \sum_{i=1}^{r} \lambda_i \delta_{x_i}$, T_n admits the Vandermonde decomposition

$$T_n = A\Lambda A^*$$

where
$$A = \left[e^{-2i\pi \langle k, x_j \rangle}\right]_{k \in \{0,...,n\}^d, j \in [\![1,r]\!]}$$
 and $\Lambda = \text{Diag}(\lambda)$.

Moment Matrix

Definition (Moment matrix). Given $\{\hat{\mu}(k)\}, k \in \{-n, \dots, n\}^d$, we define the moment matrix $T_n \stackrel{\text{def.}}{=} \begin{bmatrix} \hat{\mu}(k-l) \end{bmatrix}$

L' ` '
$$k, l \in \{0, \dots, n\}^d$$

- central in parametric approaches (Prony, ESPRIT, MUSIC, ...)
- important in off-the-grid optimization (Lasserre's hierarchies) [Castro et al., 2017]

One important difference between the discrete and non-discrete cases

• If $\mu = \sum_{j=1}^{r} \lambda_j \delta_{x_j}$, T_n admits the Vandermonde decomposition

$$T_n = A\Lambda A^*$$

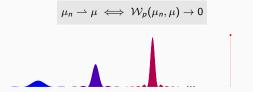
where
$$A = \left[e^{-2i\pi \langle k, x_j \rangle}\right]_{k \in \{0,...,n\}^d, j \in [\![1,r]\!]}$$
 and $\Lambda = \text{Diag}(\lambda)$.

I No such decomposition in general \rightarrow rank-revealing SVD provides useful tools

$$T_n = \sum_{j=1}^r \sigma_j u_j^{(n)} v_j^{(n)*}$$

Wasserstein-1 distance

- We need a distance between measures
- Examples include f-divergences, MMD, and Wasserstein distances
- Wasserstein distances metrize the weak* topology (on compact sets) [Santambrogio, 2015], *i.e.*



Wasserstein-1 further admits the dual formulation

$$\mathcal{W}_1(\mu, \nu) = \sup_{f \in \mathscr{C}(\mathbb{T}^d), \operatorname{Lip}(f) \leqslant 1} \int f d(\mu - \nu)$$

- ightarrow requires no positivity, only $\mu(\mathbb{T}^d)=
 u(\mathbb{T}^d)$
- $ightarrow \operatorname{Lip}(f) \leqslant 1 ext{ means } |f(x) f(y)| \leqslant \min_{k \in \mathbb{Z}^d} \|x y + k\|_1, \ \forall x, y$

Polynomial Approximations

- Assume μ is of finite total variation, $\|\mu\|_{TV} = 1$
- We make no further assumptions to provide a worst-case error bound

Theorem (Worst-case bound). For every $d, n \in \mathbb{N}$, for every $\mu \in \mathcal{M}(\mathbb{T}^d)$, there exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it holds that

$$\sup_{\mu \in \mathcal{M}} \min_{\deg(p) \leqslant n} \mathcal{W}_1(p,\mu) \geqslant \frac{1}{4(n+1)}.$$

Best approximation in the worst-case:

$$\sup_{\mu} \min_{p} \mathcal{W}_{1}(p,\mu) \ge \min_{p} \mathcal{W}_{1}(p,\delta_{0})$$

$$= \min_{p} \sup_{\text{Lip}(f) \le 1} \|f - \check{p} * f\|_{\infty} \qquad (\check{p}(x) = p(-x))$$

$$\ge \sup_{\text{Lip}(f) \le 1} \min_{p} \|f - p\|_{\infty}$$

 \rightarrow worst-case error for best polynomial approximation of Lipschitz functions

Generalization of a univariate argument of [Fisher, 1977] to the multivariate case

For this worst-case bound, sharpness is revealed in the univariate case

Make use of the Bernoulli spline

$$\mathcal{B}_1: t \in \mathbb{T} \mapsto \sum_{k=1}^{\infty} rac{\sin 2\pi k t}{\pi k} = rac{1}{2} - t$$

Lemma. For $\mu, \nu \in \mathcal{M}(\mathbb{T})$, we have

$$\mathcal{W}_1(\mu,
u) = \int_{\mathbb{T}} |\mathcal{B}_1 st \mu(t) - \mathcal{B}_1 st
u(t)| \mathrm{d}t$$

- Periodic analog of the cumulative distribution formulation of \mathcal{W}_1 on $\mathbb R$

- If $\mu = \delta_0$, then $\mathcal{W}_1(p^*, \delta_0) = \frac{1}{4}(n+1)^{-1}$, matching our lower bound
- \blacksquare If μ is absolutely continuous, leads to unicity of the best approximation

Fejér approximation

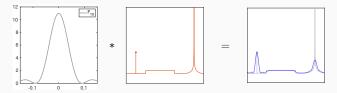
The Fejér kernel F_n is defined by

$$F_n(x) \stackrel{\text{\tiny def.}}{=} \frac{1}{(n+1)^d} \prod_{i=1}^d \frac{\sin^2((n+1)\pi x_i)}{\sin^2(\pi x_i)}$$

- Consider the polynomial $p_n \stackrel{\text{def.}}{=} F_n * \mu$
 - Alternatively,

$$p_n(x) = (n+1)^{-d} \sum \hat{\mu}(k-l)e^{-2i\pi(k-l)x} = (n+1)^{-d}e(x)^*T_ne(x)$$

- Computed using Fast Fourier Transforms



Fejér approximation

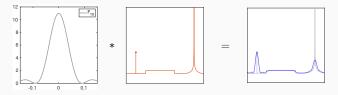
The Fejér kernel F_n is defined by

$$F_n(x) \stackrel{\text{def.}}{=} rac{1}{(n+1)^d} \prod_{i=1}^d rac{\sin^2{((n+1)\pi x_i)}}{\sin^2{(\pi x_i)}}$$

- Consider the polynomial $p_n \stackrel{\text{def.}}{=} F_n * \mu$
 - Alternatively,

$$p_n(x) = (n+1)^{-d} \sum \hat{\mu}(k-l)e^{-2i\pi(k-l)x} = (n+1)^{-d}e(x)^*T_ne(x)$$

- Computed using Fast Fourier Transforms



Theorem (Weak* convergence). We have that $p_n \rightharpoonup \mu$. More precisely,

$$\mathcal{W}_1(p_n,\mu) \leqslant rac{d}{\pi^2} rac{\log(n+1)+3}{n}$$

Theorem (Saturation). For every measure $\mu \in \mathcal{M}(\mathbb{T}^d)$ not being the Lebesgue measure, there exists a constant c such that

$$\mathcal{W}_1(p_n,\mu) \geqslant \frac{c}{n+1}$$

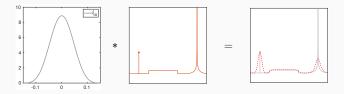
- For instance $\mathrm{d}\mu/\mathrm{d}x = 1 + \cos(2\pi x) := w(x)$ yields $\mathcal{W}_1(p_n,w) \geqslant (4\pi)^{-1}(n+1)^{-1}$
- However, $\mathcal{W}_1(p_n, \delta_0) \ge rac{d}{\pi^2} \left(rac{\log(n+2)}{n+1} + rac{1}{n+3} \right)$

Jackson approximation

• The Jackson kernel J_n is defined by

$$J_{2m}(x) \stackrel{\text{def.}}{=} \frac{3}{m(2m^2+1)} \prod_{i=1}^d \frac{\sin^4((m+1)\pi x_i)}{\sin^4(\pi x_i)}$$

- $\bullet \quad \text{Consider the polynomial } q_n \stackrel{\text{\tiny def.}}{=} J_n * \mu$
 - Computed with Fast Fourier Transforms

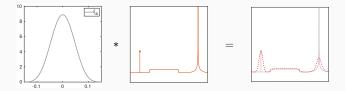


Jackson approximation

• The Jackson kernel J_n is defined by

$$J_{2m}(x) \stackrel{\text{\tiny def.}}{=} \frac{3}{m(2m^2+1)} \prod_{i=1}^d \frac{\sin^4((m+1)\pi x_i)}{\sin^4(\pi x_i)}$$

- $\bullet \quad \text{Consider the polynomial } q_n \stackrel{\text{\tiny def.}}{=} J_n * \mu$
 - Computed with Fast Fourier Transforms



Theorem. (Weak* convergence) We have that $q_n \rightharpoonup \mu$. More precisely,

$$\mathcal{W}_1(q_n,\mu) \leqslant \frac{3}{2} \frac{d}{n+2}$$

Polynomial Interpolation

Interpolating Polynomial

• The singular value decomposition: $T_n = \sum_{j=1}^r \sigma_j u_j^{(n)} v_j^{(n)*}$ allows to define

$$p_{1,n}(x) = \frac{1}{(n+1)^d} \sum_{j=1}^r |u_j^{(n)}(x)|^2$$

 \rightarrow unweighted counterpart of $p_n = F_n * \mu$. Note that $0 \leq p_{1,n} \leq 1$.

Interpolating Polynomial

• The singular value decomposition: $T_n = \sum_{j=1}^r \sigma_j u_j^{(n)} v_j^{(n)*}$ allows to define

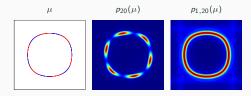
$$p_{1,n}(x) = \frac{1}{(n+1)^d} \sum_{j=1}^r |u_j^{(n)}(x)|^2$$

→ unweighted counterpart of $p_n = F_n * \mu$. Note that $0 \leq p_{1,n} \leq 1$.

Let V ^{def.}/₌ Supp µ^Z be the smallest algebraic set containing Supp µ
 Let V(Ker T_n) be the set of common roots of all polynomials in Ker T_n.

Theorem (Interpolation). If $\mathcal{V}(\text{Ker } T_n) = V$, then $p_{1,n}(x) = 1$ iff $x \in V$.

- $\rightarrow \mathcal{V}(\text{Ker } T_n) = V$ always holds for sufficiently large *n* if μ is discrete [Kunis et al., 2016], [Sauer, 2017] or nonnegative [Wageringel, 2022]
- \rightarrow generalizes [Ongie and Jacob, 2016] to varieties of arbitrary dimension



• We assume that $V \neq \mathbb{T}^d$

Theorem. Let $y \in \mathbb{T}^d \setminus V$, and let g be a polynomial of max-degree m such that $g(y) \neq 0$ and g vanishes on Supp μ . Then, for all $n \ge m$,

$$p_{1,n+m}(y) \leq rac{\|g\|_{L^2}^2}{|g(y)|} rac{m(4m+2)^d}{n+1} + rac{dm}{n+m+1}$$

In combination with the interpolation property, this proves pointwise convergence to the characteristic function of the support, with rate $O(n^{-1})$.

• If $\mu=\sum_{j=1}^r\lambda_j\delta_{\mathbf{x}_j},$ stronger results are derived with the help of the Vandermonde decomposition of T_n

Theorem (Pointwise convergence). Let $x \neq x_j$ for all j. If $n+1 > \frac{4d}{\min_{j \neq l} \|x_j - x_l\|_{\infty}}$, then $p_{1,n}(x) \leq \frac{1}{3(n+1)^2} \frac{\lambda_{\max}}{\lambda_{\min}} \sum \frac{1}{\|x - x_l\|_{\infty}^2}$

Theorem (Weak* convergence). We have

$$\frac{p_{1,n}}{\|p_{1,n}\|_{\mathsf{L}^1}} \rightharpoonup \frac{1}{r} \sum_{j=1}^r \delta_{x_j}$$

Numerical Illustrations

Numerical Illustrations

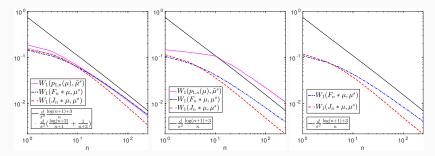
- We consider three synthetic examples
 - discrete, r = 15 points,
 - algebraic curve, r = 3000 points,
 - circle,

r = 3000 points,

 λ random λ uniform λ uniform

 \bigcirc

• We compute the semidiscrete optimal transport between the discretized approximation μ^r and the density p_n



Conclusion

Summary.

New insights on Wasserstein-1 approximation of measures

Computationally efficient polynomial approximations

Pointwise convergence towards the characteristic function of the support

Outlook.

Extension to the noisy regime

Connection with Christoffel functions

Preprint available: arXiv.2203.10531

Thank you for your attention!

References

- Candès, E.J. and C. Fernandez-Granda (2014). "Towards a Mathematical Theory of Super-Resolution". In: Comm. Pure Appl. Math. 67.6, pp. 906–956.

higher dimensions". In: IEEE Trans. Inform. Theory 63.1, pp. 621-630.

- Fisher, Stephen D. (1977). "Best Approximation by Polynomials". In: J. Approx. Th. 21.1, pp. 43–59.

Castro, Y. de et al. (2017). "Exact solutions to Super Resolution on semi-algebraic domains in

- Hua, Y. and T.K. Sarkar (1989). "Generalized Pencil-of-Function Method for Extracting Poles of an EM System from its Transient Response". In: *IEEE Trans. Antennas Propagation* 37.2.
- Kunis, S. et al. (2016). "A Multivariate Generalization of Prony's Method". In: *Linear Algebra Appl.* 490, pp. 31–47.
- Mhaskar, H. N. (2019). "Super-Resolution Meets Machine Learning: Approximation of Measures". In: J. Fourier Anal. Appl. 25.6, pp. 3104–3122.
 - Ongie, G. and M. Jacob (2016). "Off-the-grid recovery of piecewise constant images from few Fourier samples". In: *SIAM J. Imaging Sci.* 9.3, pp. 1004–1041.
 - Pan, H., T. Blu, and P.L. Dragotti (2014). "Sampling Curves With Finite Rate of Innovation". In: IEEE Trans. Signal Process. 62.2, pp. 458–471.
- Pauwels, E., M. Putinar, and J.B. Lasserre (2020). "Data Analysis From Empirical Moments and the Christoffel Function". In: *F. Comp. Math.*

R. de Prony, G. (1795). "Essai Expérimental et Analytique: Sur les Lois de la Dilatabilité des Fluides Élastiques et sur celles de la Force Expansive de la Vapeur de l'Eau et de la Vapeur

de l'Alkool, à différentes températures". In: *Journal de l'École Polytechnique Floréal et Plairial* 1.cahier 22, pp. 24–76.

Roy, R. and T. Kailath (1989). "ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques". In: IEEE Trans. Acoustics Speech Signal Process. 37.7, pp. 984–995.

- Santambrogio, F. (2015). "Optimal transport for Applied Mathematicians". In: *Birkäuser, NY* 55.58-63, p. 94.
- Sauer, T. (2017). "Prony's Method in Several Variables". In: Numer. Math. 136, pp. 411-438.

Wageringel, M. (2022). "Truncated moment problems on positive-dimensional algebraic varieties".

