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Motivation

Super-resolution. Estimate a signal from a few coarse linear measurements

� Ubiquitous problem in imaging and data science (low-pass filtering)

- Fluorescence microscopy

- X-ray crystallography

- Astronomical imaging

- Mixture estimation

� Signals of interest are often structured: pointwise sources, curves, surfaces...

0 images from the cell image library (http://cellimagelibrary.org/)
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Data model

� Radon measures

d ∈ N \ {0}, T def.
= R/Z Torus,

µ ∈M(Td )

∫

Singular measures µ

� Trigonometric moments

k ∈ Ω ⊂ Zd , typically Ω = {−n, . . . , n}d

µ̂(k)
def.
=

∫
Td

e−2ıπ〈k, x〉dµ(x)

Fourier partial sum Snµ (n = 20)

How can we recover µ from {µ̂(k)}, k ∈ {−n, . . . , n}d?
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Previous works

� For discrete measures → ”interpolation”

- Prony’s method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC

[Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].

- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete) Dual polynomial

� For general measures,

- FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)

- Polynomial approximations [Mhaskar, 2019]

- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

� In this work:

- easily computable polynomial approximations, with sharp rates inW1 metric (sim-

ilarities with [Mhaskar, 2019], use of different distance between measures)

- easily computable polynomial interpolant for algebraic varieties

3



Previous works

� For discrete measures → ”interpolation”

- Prony’s method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC

[Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].

- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete) Dual polynomial Prony (curve)

� For general measures,

- FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)

- Polynomial approximations [Mhaskar, 2019]

- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

� In this work:

- easily computable polynomial approximations, with sharp rates inW1 metric (sim-

ilarities with [Mhaskar, 2019], use of different distance between measures)

- easily computable polynomial interpolant for algebraic varieties

3



Previous works

� For discrete measures → ”interpolation”

- Prony’s method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC

[Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].

- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete) Dual polynomial Prony (curve) Approximation

� For general measures,

- FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)

- Polynomial approximations [Mhaskar, 2019]

- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

� In this work:

- easily computable polynomial approximations, with sharp rates inW1 metric (sim-

ilarities with [Mhaskar, 2019], use of different distance between measures)

- easily computable polynomial interpolant for algebraic varieties

3



Previous works

� For discrete measures → ”interpolation”

- Prony’s method [R. de Prony, 1795], ESPRIT [Roy and Kailath, 1989], MUSIC

[Schmidt, 1986], matrix pencils [Hua and Sarkar, 1989].

- Off-the-grid optimization [Candès and Fernandez-Granda, 2014]

Prony (discrete) Dual polynomial Prony (curve) Approximation

� For general measures,

- FRI approaches [Pan, Blu, and Dragotti, 2014] (still interpolation)

- Polynomial approximations [Mhaskar, 2019]

- Christoffel approximations (rational) [Pauwels, Putinar, and Lasserre, 2020]

� In this work:

- easily computable polynomial approximations, with sharp rates inW1 metric (sim-

ilarities with [Mhaskar, 2019], use of different distance between measures)

- easily computable polynomial interpolant for algebraic varieties

3



Overview

1. Preliminaries
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Preliminaries



Moment Matrix

Definition (Moment matrix). Given {µ̂(k)}, k ∈ {−n, . . . , n}d , we define the

moment matrix

Tn
def.
=
[
µ̂(k − l)

]
k,l∈{0,...,n}d

.

� central in parametric approaches (Prony, ESPRIT, MUSIC, ...)

� important in off-the-grid optimization (Lasserre’s hierarchies) [Castro et al., 2017]

One important difference between the discrete and non-discrete cases

� If µ =
∑r

j=1 λjδxj , Tn admits the Vandermonde decomposition

Tn = AΛA∗

where A =
[
e−2iπ〈k, xj 〉

]
k∈{0,...,n}d , j∈J1,rK

and Λ = Diag(λ).

� No such decomposition in general → rank-revealing SVD provides useful tools

Tn =
r∑

j=1

σju
(n)
j v

(n)∗
j
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Wasserstein-1 distance

� We need a distance between measures

� Examples include f-divergences, MMD, and Wasserstein distances

� Wasserstein distances metrize the weak* topology (on compact sets)

[Santambrogio, 2015], i.e.

µn ⇀ µ ⇐⇒ Wp(µn, µ)→ 0

...

� Wasserstein-1 further admits the dual formulation

W1(µ, ν) = sup
f∈C (Td ),Lip(f )61

∫
f d(µ− ν)

→ requires no positivity, only µ(Td ) = ν(Td )

→ Lip(f ) 6 1 means |f (x)− f (y)| 6 mink∈Zd ||x − y + k||1, ∀x , y
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Polynomial Approximations



Best Polynomial Approximation

� Assume µ is of finite total variation, ||µ||TV = 1

� We make no further assumptions to provide a worst-case error bound

Theorem (Worst-case bound). For every d , n ∈ N, for every µ ∈ M(Td ), there

exists a polynomial of best approximation in the Wasserstein-1 distance. Moreover, it

holds that

sup
µ∈M

min
deg(p)6n

W1(p, µ) >
1

4(n + 1)
.
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Idea of the proof

� Best approximation in the worst-case:

sup
µ

min
p
W1(p, µ) > min

p
W1(p, δ0)

= min
p

sup
Lip(f )61

||f − p̌ ∗ f ||∞ (p̌(x) = p(−x))

> sup
Lip(f )61

min
p
||f − p||∞

→ worst-case error for best polynomial approximation of Lipschitz functions

� Generalization of a univariate argument of [Fisher, 1977] to the multivariate case
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Sharpness (Lower Bound)

� For this worst-case bound, sharpness is revealed in the univariate case

� Make use of the Bernoulli spline

B1 : t ∈ T 7→
∞∑
k=1

sin 2πkt

πk
=

1

2
− t

Lemma. For µ, ν ∈M(T), we have

W1(µ, ν) =

∫
T
|B1 ∗ µ(t)− B1 ∗ ν(t)|dt

- Periodic analog of the cumulative distribution formulation of W1 on R

� If µ = δ0, then W1(p∗, δ0) = 1
4

(n + 1)−1, matching our lower bound

� If µ is absolutely continuous, leads to unicity of the best approximation
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Fejér approximation

� The Fejér kernel Fn is defined by

Fn(x)
def.
=

1

(n + 1)d

d∏
i=1

sin2 ((n + 1)πxi )

sin2 (πxi )

� Consider the polynomial pn
def.
= Fn ∗ µ

- Alternatively,

pn(x) = (n + 1)−d
∑

µ̂(k − l)e−2iπ(k−l)x = (n + 1)−de(x)∗Tne(x)

- Computed using Fast Fourier Transforms

-0.1 0 0.1
0

2

4

6

8

10

12

F
10

* =

Theorem (Weak* convergence). We have that pn ⇀ µ. More precisely,

W1(pn, µ) 6
d

π2

log(n + 1) + 3

n
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Sharpness (Upper Bound)

Theorem (Saturation). For every measure µ ∈ M(Td ) not being the Lebesgue

measure, there exists a constant c such that

W1(pn, µ) >
c

n + 1

- For instance dµ/dx = 1 + cos(2πx) := w(x) yields W1(pn,w) > (4π)−1(n + 1)−1

- However, W1(pn, δ0) > d
π2

(
log(n+2)

n+1
+ 1

n+3

)
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Jackson approximation

� The Jackson kernel Jn is defined by

J2m(x)
def.
=

3

m(2m2 + 1)

d∏
i=1

sin4((m + 1)πxi )

sin4(πxi )

� Consider the polynomial qn
def.
= Jn ∗ µ

- Computed with Fast Fourier Transforms

-0.1 0 0.1
0

2

4

6

8

10

J
10

* =

Theorem. (Weak* convergence) We have that qn ⇀ µ. More precisely,
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3

2

d

n + 2
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Polynomial Interpolation



Interpolating Polynomial

� The singular value decomposition: Tn =
∑r

j=1 σju
(n)
j v

(n)∗
j allows to define

p1,n(x) =
1

(n + 1)d

r∑
j=1

|u(n)
j (x)|2

→ unweighted counterpart of pn = Fn ∗ µ. Note that 0 6 p1,n 6 1.

� Let V
def.
= Suppµ

Z
be the smallest algebraic set containing Suppµ

Let V(Ker Tn) be the set of common roots of all polynomials in Ker Tn.

Theorem (Interpolation). If V(Ker Tn) = V , then p1,n(x) = 1 iff x ∈ V .

→ V(Ker Tn) = V always holds for sufficiently large n if µ is discrete [Kunis

et al., 2016],[Sauer, 2017] or nonnegative [Wageringel, 2022]

→ generalizes [Ongie and Jacob, 2016] to varieties of arbitrary dimension

µ p20(µ) p1,20(µ)
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Pointwise convergence

� We assume that V 6= Td

Theorem. Let y ∈ Td \ V , and let g be a polynomial of max-degree m such that

g(y) 6= 0 and g vanishes on Suppµ. Then, for all n > m,

p1,n+m(y) 6
||g ||2

L2

|g(y)|
m(4m + 2)d

n + 1
+

dm

n + m + 1

� In combination with the interpolation property, this proves pointwise convergence to the

characteristic function of the support, with rate O(n−1).
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The Discrete Case

� If µ =
∑r

j=1 λjδxj , stronger results are derived with the help of the Vandermonde

decomposition of Tn

Theorem (Pointwise convergence). Let x 6= xj for all j . If n + 1 > 4d
minj 6=l ||xj−xl ||∞

,

then

p1,n(x) 6
1

3(n + 1)2

λmax

λmin

∑ 1

||x − xj ||2∞

Theorem (Weak* convergence). We have

p1,n

||p1,n||L1

⇀
1

r

r∑
j=1

δxj
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Numerical Illustrations



Numerical Illustrations

� We consider three synthetic examples

- discrete, r = 15 points, λ random moments analytical

- algebraic curve, r = 3000 points, λ uniform numerical integration

- circle, r = 3000 points, λ uniform analytical

� We compute the semidiscrete optimal transport between the discretized approximation µr

and the density pn

10
0

10
1

10
2

n

10
-2

10
-1

10
0

10
0

10
1

10
2

n

10
-2

10
-1

10
0

10
0

10
1

10
2

n

10
-2

10
-1

10
0

16



Conclusion



Conclusion

Summary.

New insights on Wasserstein-1 approximation of measures

Computationally efficient polynomial approximations

Pointwise convergence towards the characteristic function of the support

Outlook.

Extension to the noisy regime

Connection with Christoffel functions

Preprint available: arXiv.2203.10531
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Thank you for your attention!
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