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Abstract

Complex measures recently became a well-established data model. We discuss the1

adaptation of the ubiquitous fast Fourier transform to measures, which involves their2

approximation by a multivariate trigonometric polynomial respecting normalization3

and non-negativity if applicable. The achieved approximation results, with respect4

to the Wasserstein-1 distance, are sharp up to logarithmic factors. The Fourier5

transform of atomic measures is shown to be computed up to logarithmic factors in6

linear time with respect to the problem size. The inverse Fourier transform is in7

general more involved but can be replaced by the easily computed approximation8

for typical applications.9

1 Introduction10

To quote from [12]: "These days, it is almost beyond belief that there was a time before digital11

technology... Much of this magic is due to a family of algorithms that collectively go by the name12

fast Fourier transform. Indeed the FFT is perhaps the most ubiquitous algorithm used today to13

analyze and manipulate digital or discrete data." Much of the success of the FFT is due to the fact14

that trigonometric polynomials well approximate smooth functions and that algorithms as well as15

their implementations are efficient.16

During the last two decades and mainly driven by the specific applications, several new aspects17

came into focus: While data might live in high spatial dimensions it often has additional properties18

that allow for its approximation by tailored computational schemes. Primal classical examples19

being solutions of the electronic Schrödinger equation or multivariate kink functions, which both20

belong to function spaces with dominating mixed smoothness, see e.g. [14]. Such functions are well21

approximated by trigonometric polynomials with frequencies on a hyperbolic cross, and, together22

with a spatial discretization on a sparse grid, gave rise to a so-called hyperbolic cross FFT [7]. Even23

more general, compressed sensing and sparse expansions also come with several variants of FFTs,24

see e.g. [6].25

Here, we are interested in yet another generalized FFT which operates on measures. At the current26

stage, we would like to impose no further restriction than the measure living on the d-dimensional27

periodic unit cube. We put some emphasis on singular measures, which includes discrete and28

singular continuous measures for d > 1. Our main object of study is a certain proxy for the measure29

which comes with an approximation guarantee, is easily computable, and seems useful in typical30

applications, for instance to estimate the Wasserstein distance between two measures. The overarching31

concept is to trade exactness for efficiency: instead of precise computations up to machine precision,32

the proposed methods guarantee a certain target accuracy.33
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2 Preliminaries34

Let d ∈ N denote the spatial dimension and |x−y| = mink∈Zd ||x−y+k||1 the wrap-around 1-norm35

on Td = [0, 1)d, then a function has Lipschitz-constant one, ϕ ∈ Lip(Td), if |f(x)−f(y)| ≤ |x−y|36

for all x, y ∈ Td. Please note that replacing the 1-norm by another p-norm just restricts the class of37

functions with Lipschitz-constant one further. Throughout this paper, let µ, ν denote some complex38

measures on Td with finite total variation and normalization µ(Td) = ν(Td) = 1. The Fourier39

coefficients of µ are given by40

µ̂(k) =

∫
Td

e−2πikxdµ(x), k ∈ Zd,

and these are finite with |µ̂(k)| ≤ ‖µ‖TV and µ̂(0) = 1. Using the dual characterisation by41

Kantorovich-Rubinstein, the Wasserstein-1-distance of µ and ν is given by42

W1(ν, µ) = inf
π

∫
T2d

|x− y|dπ(x, y) = sup
Lip(ϕ)≤1

∣∣∣∣∫
Td

ϕ(x) d(ν − µ) (x)

∣∣∣∣ ,
where the infimum is taken over all couplings π with marginals µ and ν, respectively. By slight abuse43

of notation, we also write W1(p, µ) in case the measure ν has density p, i.e., dν(x) = p(x)dx.44

Now let45

Fn(x) =

n∑
k=−n

(
1− |k|

n+ 1

)
e2πikx =

1

n+ 1

(
sin(n+ 1)πx

sinπx

)2

denote the univariate Fejér kernel and Fn(x1, . . . , xd) = Fn(x1) · . . . · Fn(xd) the multivariate Fejér46

kernel, respectively. The main object of study now is the approximation47

pn(x) = (Fn ∗ µ) (x) =

∫
Td

Fn(x− y)dµ(y), (1)

an example is given in the following Figure 1. A similar construction can be found in [11], which48

however differs with respect to the constructed approximation and the metric for the approximation49

error.
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Figure 1: The measure µ = 1
2δ 1

4
+ ν with dν = 4

3χ[ 1
2 ,

7
8 ]dλ and λ being the Lebesgue measure is

approximated by the trigonometric polynomial density p19.
50

3 Results51

We start by noting that the suggested approximation preserves non-negativity and normalization.52

Theorem 3.1. Let d, n ∈ N and the measure µ be non-negative, then the finite moment matrix53

Tn := (µ̂(k − `))k,`∈[n] , [n] = {0, . . . , n}d, (2)

is positive semi-definite. In particular, the approximation fulfills54

pn(x) =
en(x)∗Tnen(x)

(n+ 1)d
≥ 0, en(x) =

(
e2πikx)

k∈[n]

and ‖pn‖L1 = ‖µ‖TV = 1.55
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Proof. Let q ∈ C(n+1)d , then direct computation shows56

q∗Tnq =
∑
k,l∈[n]

qk

(∫
Td

e−2πi(k−`)ydµ(y)

)
q` =

∫
Td

∣∣∣∣∣∣
∑
k∈[n]

qke2πiky

∣∣∣∣∣∣
2

dµ(y) ≥ 0.

Choosing q = en(x) yields the second claim and by interchanging the order of integration and noting57

that the value of the inner integral is independent of y also58

‖pn‖L1 =
1

(n+ 1)d

∫
Td

∫
Td

∣∣∣∣∣∣
∑
k∈[n]

e2πik(y−x)

∣∣∣∣∣∣
2

dxdµ(y) = µ(Td) = ‖µ‖TV.

59

Our next goal is a quantitative approximation result, for which we need the following preparatory60

lemma. This result can be found in qualitative form e.g. in [1, Lemma 1.6.4].61

Lemma 3.2. Let n ∈ N, then we have62 ∫
T
Fn(x)|x|dx ≤ log(n+ 1)

n
.

Proof. Using Fn(x) ≤ n+ 1 and Fn(x) ≤ (4(n+ 1)x2)−1, we obtain63

2

∫ 1/4n

0

xFn(x)dx+ 2

∫ 1/2

1/4n

xFn(x)dx ≤ n+ 1

16n2
+

log(8n)

2(n+ 1)
≤ log(n+ 1)

n
.

64

We note in passing, that a finer analysis allows for the estimate65

log(n+ 1)

π2n
+
c

n
≤
∫
T
Fn(x)|x|dx ≤ log(n+ 1)

π2n
+
C

n
.

for some absolute constants C, c ∈ R.66

Theorem 3.3. Let d, n ∈ N, then67

W1(pn, µ) ≤ d · ‖µ‖TV · log(n+ 1)

n
which is sharp up to a small multiplicative constant for µ = δ0.68

Proof. We compute69

W1(pn, µ) = sup
Lip(ϕ)≤1

∣∣∣∣∫
Td

pn(x)ϕ(x)dx−
∫
Td

ϕ(y)dµ(y)

∣∣∣∣
= sup

Lip(ϕ)≤1

∣∣∣∣∣
∫
Td

[∫
Td

d∏
s=1

Fn(xs − ys)ϕ(x)dx− ϕ(y)

]
dµ(y)

∣∣∣∣∣
≤ sup

Lip(ϕ)≤1

∫
Td

∫
Td

d∏
s=1

Fn(xs) |ϕ(x+ y)− ϕ(y)| dxd|µ|(y)

≤
∫
Td

∫
Td

d∏
s=1

Fn(xs)

d∑
`=1

|x`|dxd|µ|(y)

= |µ|(Td)
d∑
`=1

∫
Td

d∏
s=1

Fn(xs)|x`|dx

= d · |µ|(Td)
∫
T
Fn(x)|x|dx

which yields the result by applying Lemma 3.2. Regarding the sharpness, we see that the two inequal-70

ities become equalities for µ = δ0 and ϕ(x) = |x| and Lemma 3.2 is sharp up to a multiplicative71

constant.72

3



An almost matching lower bound is given as follows.73

Theorem 3.4. For any measure µ on Td being not the Lebesgue measure, there is a constant c > 074

such that for all n ∈ N holds75

W1(pn, µ) ≥ c

n+ 1
.

Proof. We rely on a nice relationship between the Wasserstein distance and a discrepancy as outlined76

in [4]. Let ĥ ∈ `2(Zd), ĥ(k) ∈ R \ {0}, ĥ(k) = ĥ(−k), and consider the reproducing kernel Hilbert77

space78

H = {ϕ ∈ L2(Td) :
∑
k∈Zd

|ĥ(k)|−2|ϕ̂(k)|2 <∞}, ‖ϕ‖2H =
∑
k∈Zd

|ĥ(k)|−2|ϕ̂(k)|2.

Given two measures µ, ν, their discrepancy (which depends also on the space H) is defined by79

D(µ, ν) = sup
‖ϕ‖H≤1

∣∣∣∣∫
Td

ϕ d(µ− ν)

∣∣∣∣
and fulfills the geometric-arithmetic inequality80

D(pn, µ)2 =
∑
k∈Zd

|ĥ(k)|2|µ̂(k)− p̂(k)|2

=
∑

‖k‖∞≤n

|ĥ(k)|2
∣∣∣∣∣1−

d∏
`=1

(
1− |k`|

n+ 1

)∣∣∣∣∣
2

|µ̂(k)|2 +
∑

‖k‖∞>n

|ĥ(k)|2|µ̂(k)|2

≥
∑

‖k‖∞≤n

|ĥ(k)|2
∣∣∣∣ ‖k‖1d(n+ 1)

∣∣∣∣2 |µ̂(k)|2 +
∑

‖k‖∞>n

|ĥ(k)|2|µ̂(k)|2

=
∑

‖k‖∞≤n

|ĥ(k)|2
∣∣∣∣ ‖k‖1d(n+ 1)

∣∣∣∣2 |µ̂(k)− λ̂(k)|2 +
∑

‖k‖∞>n

|ĥ(k)|2|µ̂k − λ̂(k)|2

≥ 1

d2(n+ 1)2
‖h ∗ (µ− λ)‖2L2(Td)

where h(x) =
∑
k∈Zd ĥ(k)e2πikx and λ denotes the Lebesgue measure with λ̂(0) = 1 and λ̂(k) = 081

for k ∈ Zd \ {0}.82

Our second ingredient is a Lipschitz estimate: If ϕ ∈ H with ‖ϕ‖H ≤ 1, then83

|ϕ(y)− ϕ(y + x)|2 =

∣∣∣∣∣∣
∑
k∈Zd

ϕ̂(k)
(

e2πiky − e2πik(y+x)
)∣∣∣∣∣∣

2

≤ ‖ϕ‖2H
∑
k∈Zd

∣∣∣e2πiky − e2πik(y+x)
∣∣∣2 |ĥ(k)|2

≤ 2 (K(0)−K(x)) ,

where K(x) =
∑
k∈Zd |ĥ(k)|2e2πikx = (h ∗ h)(x) denotes the so-called reproducing kernel of the84

space H . If this kernel is K(x1, . . . , xd) = h[4](x1) · . . . · h[4](xd) for some univariate function85
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h[4] ∈ C2(T),
(
h[4]
)′

(0) = 0, we find by a telescoping sum and direct calculation86

K(0)−K(x) =

d∏
`=1

h[4](0)−
d∏
`=1

h[4](x`)

≤
d∑
`=1

(
h[4](0)`

d−∏̀
k=1

h[4](xk)− h[4](0)`−1
d−`+1∏
k=1

h[4](xk)

)

≤
d∑
`=1

‖h[4]‖d−1∞
[
h[4](0)− h[4](x`)

]
≤ 1

2
‖h[4]‖d−1∞

∥∥∥∥(h[4])′′∥∥∥∥
∞
|x|2.

To make a specific choice, let a ∈ (0, 18 ) be some irrational number and set h[2] = χ[−a,a] ∗χ[−a,a] as87

the convolution of the indicator function on [−a, a] with itself, h[4] = h[2]∗h[2], and h(x1, . . . , xd) =88

h[2](x1)·. . .·h[2](xd). Since the space of Lipschitz test functions is at least as large as the reproducing89

kernel Hilbert space, we derive90

W1(pn, µ) ≥ 1

2
·

(√
3

4

)d−1
a1−

3
2dD(pn, µ) ≥

1 ·
(√

3
4

)d−1
a1−

3
2d

d(n+ 1)
‖h ∗ (µ− λ)‖L2(Td).

Since a is irrational, we can directly see by Parseval’s theorem that ‖h ∗ (µ− λ)‖L2(Td) = 0 if and91

only if µ = λ. For µ 6= λ, we obtain the statement with a positive c depending on µ, a, and d.92

Remark 3.5. Classical approximation theory offers more, which we shortly illustrate for the uni-93

variate case d = 1: As seen above, the Lebesgue measure is approximated by Fn ∗ λ = λ without94

any error. For the suggested approximation, we may thus ask how well a measure dµ = w(x)dx95

with smooth (non-negative) density might be approximated. If we choose the analytical density96

w(x) = 1 + cos(2πx), then Fn ∗w(x)−w(x) = cos(2πx)/(n+ 1) and by testing with the Lipschitz97

function ϕ(x) = cos(2πx)/(2π), we see that98

W1(Fn ∗ w,w) = sup
Lip(ϕ)≤1

∣∣∣∣∫
T

(Fn ∗ w(x)− w(x))ϕ(x)dx
∣∣∣∣

≥ 1

2π(n+ 1)

∫
T

cos2(2πx)dx =
1

4π(n+ 1)
.

This phenomenon is known as saturation and might be cured by replacing the Fejér kernel by other99

kernels, i.e., the so-called Jackson kernel (being almost F 2
n/2) improves Theorem 3.3 by getting rid100

of the log-factor. Using kernels Kn with stronger localization and ’smoother’ Fourier coefficients,101

e.g. higher powers of the Fejér kernel, allows to improve the rate beyond n−1 if the measure has a102

smooth density w. This can be seen from partial integration103

W1(Kn ∗ w,w) = sup
Lip(ϕ)≤1

∣∣∣∣∫
T

(Kn ∗ ϕ(y)− ϕ(y))w(y)dy
∣∣∣∣

= sup
ψ,Lip(ψ′)≤1

∣∣∣∣∫
T

(Kn ∗ ψ(y)− ψ(y))w′(y)dy
∣∣∣∣

and the above arguments. However note that from a practical perspective, this asks for a-priori104

smoothness assumptions on the measure to choose a suitable kernel.105

4 Fourier transforms and applications106

We briefly discuss the actual computations and their complexities for atomic measures. This is107

followed by some sample applications of Fourier transforms and we end by numerical examples that108

confirm our error estimates.109
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4.1 Fourier transform of atomic measures110

Let111

µ =

m∑
j=1

λjδxj

be given by its weights λj ∈ C and nodes xj ∈ Td, j = 1, . . . ,m, then the computation of the112

Fourier coefficients113

µ̂(k) =

∫
Td

e−2πikxdµ(x) =

m∑
j=1

λje−2πikxj , |k| ≤ n,

is known as adjoint nonequispaced discrete Fourier transform. Its naive computation takes O(nd ·m)114

floating point operations while a faster computation µ̂a takes O(nd log n+m| log ε|d) floating point115

operations and guarantees an accuracy116

max
|k|≤n

|µ̂(k)− µ̂a(k)| ≤ ε
m∑
j=1

|λj | ,

see e.g. [8]. Efficient implementations are available http://www.nfft.org, including references117

to other packages, wrappers for julia and python, and a derivation of the fast algorithms.118

4.2 Inverse Fourier transform119

Given the Fourier coefficients120

µ̂(k) =

∫
Td

e−2πikxdµ(x), |k| ≤ n,

of a complex measure µ, we suggest to compute the approximation121

p̃ :=

(
pn

(
j

2n+ 1

))
|j|≤n

, pn

(
j

2n+ 1

)
=
∑
|k|≤n

w(k)µ̂(k)e2πikj/(2n+1), (3)

where wk :=
∏d
s=1 (1− |ks|/(n+ 1)) are the Fourier coefficients of the tensor product Fejér kernel.122

This computation employs one scaling and one fast Fourier transform and thus takes O(nd log n)123

floating point operations. The transform is invertible and comes with the approximation guarantee in124

Theorem 3.3.125

For atomic measures, there is a large zoo of methods that compute or approximate the parameters of126

the measure, e.g., parametric methods like Prony’s method, matrix pencil, ESPRIT, and MUSIC or127

non-parametric methods like TV-minimization, BLASSO. The support suppµ = {x1, . . . , xm} ⊂128

Td can e.g. be recovered perfectly by solving an eigenvalue problem for the moment matrix (2) as129

soon as rankTn = m. This is generically the case as soon as nd > m, see e.g. [9, 5] for details.130

However note that in all cases, these methods are more expensive, ruling them out for large m or n.131

4.3 Convolutions, marginals, and derivatives132

All typical applications of Fourier transforms rely on the diagonalization of translation invariant linear133

operators. Such operators are convolutions, defined for two complex measures µ, ν spectrally via134

µ̂ ∗ ν(k) = µ̂(k) · ν̂(k), k ∈ Zd.
If the measures are represented as in (3), then an FFT followed by the multiplication of the Fourier135

coefficients yields the Fourier coefficients of the convolution product. For example, the partial136

derivatives is translation invariant and can be approximated via137

∂xµ = ∂xδ0 ∗ µ ≈ F ′n ∗ µ.

Similarly, let µ ∈ M(Td+d′), then the marginal µ1(A) := µ(A × Td′), A ⊂ Td, has Fourier138

coefficients139

µ̂1(k) =

∫
Td

e−2πikxdµ1(x) =

∫
Td+d′

e−2πikxe−2πi0ydµ(x, y) = µ̂(k, 0)

and we hope that this proves useful in a fully spectral formulation of the Sinkhorn algorithm.140
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4.4 Accuracy141

To illustrate the Wasserstein rate of Theorem 3.3, we implement the semidiscrete optimal transport142

between a discrete measure µ :=
∑
λjδxj and the corresponding polynomial density pn defined in143

(1). To this end, we solve the dual optimal transport problem144

sup
f,g∈C(Td)

m∑
j=1

λjf(xj) +

∫
Td

g(y)pn(y)dy s.t. ∀x, y ∈ Td, f(x) + g(y) ≤ |x− y|.

It is known, see e.g. [10], that this problem may be equivalently formulated as the following finite145

dimensional optimization problem146

max
f∈Rm

+

m∑
j=1

λjfj +
∑
j

∫
Lj(f)

(|xj − y| − fj)pn(y)dy (4)

where Lj(f) are the so-called Laguerre cells associated with the weights f , given by147

Lj(f)
def.
=
{
y ∈ Td; ∀i 6= j, |xj − y| − fj ≤ |xi − y| − fi

}
.

In our experiments, we compute the Laguerre cells over a 500× 500 grid, and use a BFGS scheme148

to solve the maximization (4). We use Mark Schmidt’s implementation for this step [13]. We149

evaluate W1(pn, µ) for a collection of discrete measures with random positions xj , random positive150

amplitudes λj such that λmax/λmin ' 6, and random sparsities 2 ≤ s ≤ 10. Our results are151

displayed in Figure 2, and show that the empirical rate actually matches the upper bound we provide152

in Theorem 3.3 in that case.153
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Figure 2: Average value of W1(pn, µ) over 100 random tests, in one (left) and two (right) dimensions.

4.5 Optimal transport154

Given arbitrary measures µ, ν, we propose to approximate the Wasserstein distanceW1(µ, ν) between155

µ and ν by W (n)
1 := W1(p̃n, q̃n), where p̃n = ((Fn ∗ µ)(xj))j∈[N ] and q̃n = ((Fn ∗ ν)(xj))j∈[N ]156

are the approximations of µ and ν respectively, evaluated on the grid points xj := N−1j ∈ Td,157

j ∈ [N ], for some integer N ≥ 2n+ 1. The distance W (n)
1 may be estimated accurately using the158

Sinkhorn algorithm [3], which consists in the alternation159

α(n) = p̃n �Kλβ
(n)

β(n) = q̃n �Kλα
(n),

where each iterates involve the updated value of α(n) (resp, β(n)), until some convergence criterion160

is met. Here the symbol � denotes pointwise division and the kernel matrix Kλ is defined as161

(Kλ)ij
def.
= exp(−λ|xi − xj |), i, j ∈ [N ],
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where λ > 0 is the (entropic) regularization parameter, see [3] for more details. The approximate trans-162

port plan between the two polynomial densities p̃n and q̃n is then Π(n) := diag(α(n))Kλ diag(β(n)),163

and the (debiased) Sinkhorn divergence approximates the Wasserstein distance, see e.g. [2].164

Let Π be the optimal transport plan between µ and ν (for W1). In our experiment, we set µ and ν165

to be discrete, so that in particular the coupling Π is also sparse. Figure 3 displays the evolution of166

W1(Π(n),Π) with n, computed using the semi-discrete procedure described in section 4.4. We scale167

the regularization parameter λ linearly in n, so that the problem becomes less and less regularized as168

the approximations p̃n and q̃n get sharper. At each step of the Sinkhorn algorithm, an estimate of the169

marginal p̃n (resp. q̃n) is given by α(n) � (Kλβ
(n)) (resp. β(n) � (Kλα

(n)). We use these estimates170

as a stopping criterion, ending the iterations when the mean relative error between p̃n, q̃n and their171

estimates goes below 10−5. Our results show that Π(n) converges towards Π empirically at the same172

rate than its marginals (up to multiplication by a scalar), see Figure 3.173

10
0

10
1

10
2

n

10
-3

10
-2

10
-1

O(log(n)/n)

Figure 3: Average value of W1(Π(n),Π) over 50 random tests: the input marginals µ and ν are taken
of same sparsity, randomly selected in [[2, 8]], with random amplitudes (with λmax/λmin ' 6) and
random positions.

Since multiplication with K acts as convolution, we can formulate the Sinkhorn algorithm for174

arbitrary measures µ, ν by using the approximations p̃ from (3), analogously associate q̃ to ν and175

iterate on the Fourier coefficients of the dual potentials as176

α̂ = Fn

(
p̃� F−1n Dβ̂

)
β̂ = Fn

(
q̃ � F−1n Dα̂

)
whereD denotes some analytically known diagonal matrix. In particular, this easily allows to increase177

the parameter λ and n along the Sinkhorn iterations. We leave this study to future research.178

5 Conclusion and outlooks179

This paper introduced a simple proxy to approximate an arbitrary measure on the d-dimensional180

torus. We provided bounds on the approximation error that are sharp up to a logarithmic factor.181

Switching between trigonometric moments and spatial samples on a computational grid is done via182

the fast Fourier transform. For discrete measures with known parameters, the computation of the183

trigonometric moments is done by a nonequispaced FFT. The reconstruction of the parameters from184

these moments is costly so that we suggested to evaluate the proxy at the computational grid instead.185

As a proof of concept, we included a small example where an optimal transport plan between two186

measures is computed from their approximations and inherits their approximation error.187
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