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Abstract— We consider the sparse spikes super-resolution
problem over the space of Radon measures. When the obser-
vations consist in a low-pass filtering of the input, a common
approach to off-the-grid super-resolution considers semidefinite
(SDP) relaxations of the total variation (the total mass of the mea-
sure) minimization problem. Solving this SDP is often intractable
for large scale settings, since the problem size grows as f2d

c where
fc is the cutoff frequency of the filter, and d the dimension of the
signal. We propose a solver applicable to a class of observations
larger than simply convolution, and scalable with the dimension.
Our first contribution is a Fourier approximation scheme of the
forward operator, making the TV-minimization problem express-
ible as a SDP. Our second contribution introduces a penalized for-
mulation of this semidefinite lifting, which has low-rank solutions.
Our last contribution is a conditional gradient approach with non-
convex updates. This algorithm leverages both the low-rank and
the Fourier structure of the problem, resulting in an O(fd

c log fc)

complexity per iteration.

1 Introduction
Super-resolution problems aim at accurately recovering

sparse signals from low-resolution and possibly noisy measure-
ments. This is an important challenge in medical imaging, mi-
croscopy or astronomical imaging, where it may be crucial to
overcome the physical limitations of sensing devices. It is also
related to several statistical problems, for instance compressive
statistical learning [10], or Gaussian mixture estimation [9].

Formally, our goal is to retrieve a d-dimensional discrete
measure µ0 =

∑r
k=1 aiδxi

(ai ∈ R, xi ∈ Td, where T = R/Z
is the torus) given the observations

y = Φµ0 + w ∈ Cm,

where w is some noise, and Φ : M(Td) → Cm is a known
linear operator defined as

Φµ
def.
=

∫
Td

ϕ(x)dµ(x), where ϕ(x) = (ϕ1(x), . . . , ϕm(x)),

with operator norm ||Φ|| def.
=
∑p
i=1 ||ϕi||2L2(Td). An important ex-

ample is when Φ is the Fourier operator F , defined as

F : µ 7→
(∫

Td

e−2iπ〈ω, x〉dµ(x)
)
ω∈Ωc

.

where Ωc
def.
= J−fc, fcKd, for some cutoff frequency fc ∈ N∗. In

that case, Φµ0 is a vector of trigonometric moments of µ0, at
freqencies ω ∈ Ωc. This is the framework considered in [6].

2 Fourier approximation of operators
The method we introduce in this paper is based on an ap-

proximate factorization of Φ under the form A ◦ F , where

A : C|Ωc| → Cm is some linear operator. Given an arbitrary
forward operator Φ, we define A as the operator minimizing
||Φ−A◦F||2. The approximation error can be made arbitrarily
small as fc goes to infinity.

A typical example is the convolution with some kernel ψ.
This corresponds to

A = Diag(ψ̂(ω))ω∈Ωc
, and m = |Ωc|.

For instance, if ψ is the Dirichlet kernel, A = Id. In the case
where Supp ψ̂ 6⊂ Ωc, ψ̂ must be sampled over Ωc.

This framework also encompasses some non-convolution
problems, an important example being subsampled convolu-
tion. In that case, with G the sampling grid, A is given by

A =
(
ψ̂(ω)e2iπ〈ω, t〉

)
(t,ω)∈G×Ωc

, and m = |G|.

Whenψ is a Gaussian filter, this last case corresponds to the set-
ting of the Single Molecule Localization Microscopy (SMLM)
data, on which we perform our experiments (see section 6).

Figure 1: Examples of ideal low-pass filter (left), Gaussian (middle) and sub-
sampled Gaussian (right) observations.

3 Beurling LASSO
Although the inverse problem we consider is severely ill-

posed, sparse estimates can be found by solving the following
minimization problem, known as the BLASSO [4]:

min
µ∈M(Td)

1

2λ
||y −A ◦ Fµ||2 + |µ|(Td) (Pλ)

where λ should be adapted to the noise level. The total variation
norm is defined as

|µ|(Td) def.
= sup

{
<
(∫

Td

ηdµ
)

; η ∈ C(Td), ||η||∞ 6 1

}
.

It is the natural extension of the `1-norm to the space of Radon
measures. For instance, if µ =

∑
akδxk

, then |µ|(Td) = ||a||1.
This paper introduces a novel numerical solver for (Pλ). In-

deed, although the BLASSO grid-free approach offers bene-
ficial mathematical insight, its numerical resolution remains
challenging. In the seminal paper [6], the authors propose to
lift the problem (when d = 1, and Φ = F) to a semidefinite
program, solvable via interior points methods. Using Lasserre
hierarchy, this semidefinite lifting can also be applied in higher
dimensions [8, 11]. However, usual interior points solvers scale
poorly with d. We propose a novel method, based on these
semidefinite hierarchies, scalable with the dimension.



4 Semidefinite formulations
Since (Pλ) only involves a few trigonometric moments of

measures, it may be cast as a quadratic program over the cone
of moment sequences. Semidefinite characterizations of this
moment cone exists when the underlying measures are defined
on semi-algebraic sets, i.e. sets described by polynomials in-
equalities. These results have important numerical assets: in
[2], a generic method is proposed to approximate to arbitrary
precision the moment cone by semidefinite liftings of increas-
ing size – the so-called Lasserre hierarchy.

The semidefinite relaxation of (Pλ) at order l ∈ N reads:

min
τ,z,u

f(R) = τ + u0 +
1

2
|| y
λ

+ 2Az||2

s.t.


(a) R =

[
R z̃
z̃∗ τ

]
� 0,

z̃ω = zω, ∀ω ∈ Ωc
(b) R =

∑
k∈K−l−nc,l+ncJd ukΘk

(P(l)
λ )

where nc = 2fc + 1 and Θk = θkd ⊗ . . . ⊗ θk1
, θki being

the Tœplitz matrix with ones on its ki-th diagonal, zeros else-
where, and⊗ the Kronecker product. When d = 1 for instance,
contraint (b) is simply asking that R be a Toeplitz matrix.

Proposition 1. Let R ∈ M(l+nc)d(C) be a solution of (P(l)
λ ),

and letRl−1 be the top left block of size (l+nc−1)d×(l+nc−
1)d in R. If rankR = rankRl−1, then min(P(l)

λ ) = min(Pλ).

The rank condition in Proposition 1 ensures that R is the
moment matrix of some measure supported on rank(R) points
[1]. In the rest of the paper, we assume that we are given l such
that the two minima are equal (the hierarchy is said to have
collapsed). Note that in practice, l = 0 seems to suffice.

The following crucial result motivates the use of a condi-
tional gradient (aka Frank-Wolfe) scheme to solve (P(l)

λ ).

Proposition 2. When d = 1, (P(l)
λ ) always admits a solution

R? such that rankR? 6 r, r being the number of spikes in a
solution of (Pλ).

Numerical results seem to show that this holds when d = 2.

Remark 1. To extract the support of a measure from its moment
matrix, one may use the method described in [3]. We do not
discuss it here, but it is the one we use in our implementation.

5 FFT-based Frank-Wolfe solver
Conditional gradient algorithms are well suited to handle

low-rank iterates, in contrast for instance with interior points
schemes. Following Proposition 2, this is a property we want
to exploit. However, their efficiency relies on the simplicity of
the geometry of the domain. In our case, the geometry induced
by constraint (b) (with the semidefinite constraint) remains too
complex. We introduce the following penalized problem:

min
τ,z,R

τ +
1

l
TrR+

1

2
|| y
λ

+ 2Az||2 +
1

2ρ
||PV ⊥

Θ
(R)||2

s.t.
[
R z̃
z̃∗ τ

]
� 0, z̃ω = zω, ∀ω ∈ Ωc

(P(l)
λ,ρ)

where PV ⊥
Θ

is simply the orthogonal projection on (Vect Θk)⊥.

We propose to solve (P(l)
λ,ρ) using Frank-Wolfe algorithm [5].

We store our iterates as R = UU∗. Frank-Wolfe’s oracle over
the semidefinite cone is given by a leading eigenvector of the
matrix M defined as ∇f · H = 〈M, H〉 (for simplicity, we
also write ∇f instead of M ), which we compute using power
iterations. This is done efficiently in O(fdc log fc), exploiting
the connection between Tœplitz matrices and the Fast Fourier
Transform. We further add a non convex BFGS update on U
similar to [7] after each Frank-Wolfe step. Our algorithm ap-
pears to converge in exactly r steps, r being the number of
spikes composing the solution of the BLASSO.

Algorithm 1 Building the moment matrix

set: U0 = [0 . . . 0]
>, D0 s.t. tr(U?U∗? ) 6 D0

while 〈UtUht − vtv∗t , ∇f(vtv
∗
t )〉 > εf(U0U∗0 ) do

1. FW oracle: vt = D0 arg min||v||61 v
> · ∇f(UtU∗t ) · v

2. Update: Ût+1 =
[√
αrUt,

√
βrvt

]
, where

αt, βt = arg min06α+β61 f(αUtU∗t + βvtv
∗
t )

3. Correction: Ut+1 = bfgs(U 7→ f(UU∗), start at Ût+1)
end while
return Ut+1

Remark 2. In Algorithm 1 in practice,D0 = 2f(0) works. Fur-
thermore, the linesearch in Step 2. has a closed-form solution.

6 Numerics
Our tests are performed on the Contest Dataset 2, from the

2013 SMLM challenge, bigwww.epfl.ch/smlm/. We measure
the performance with the Jaccard index J (optimal performance
is achieved when J = 1). Figure 2 (left) shows the Jaccard in-
dex on high density images (i.e. r > 9) with respect to several
values of relaxation parameters λ, ρ, up to a normalization fac-
tor (||Φ∗y||∞ for λ, ||Φ∗y||−1

∞ for ρ). Figure 2 (right) shows the
perfomance (in blue), as well as the computational time (in red)
as the maximum number of BFGS iterations increases. Figure 3
shows an example of spikes reconstruction.
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Figure 2: Performance evaluation. Results are averaged over 20 images.
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Figure 3: Support localization example. Error is ||x0−xrecov||
||x0||

= 1.57 ∗ 10−2.
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