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Abstract—Many problems in imaging science involve reconstructing,
from partial observations, highly concentrated signals, e.g. pointwise
sources or contour lines. We consider in this work the problem of
recovering measures supported on such singular sets, given finitely
many of their trigonometric moments. We introduce simple polynomial
estimates, and prove pointwise and weak convergence as the number n of
known moments increases. We show that the optimal weak convergence
rate with respect to the Wasserstein-1-distance is inversely proportional
to n, and that it is achieved by our estimate.

I. INTRODUCTION

Signed Radon measures are a relevant model in many applications,
e.g. single-molecule localization microscopy or X-ray crystallogra-
phy, as they can capture diverse and complex structures, such as
points, curves or manifolds for instance. In this work, we consider
the following problem, ubiquitous in imaging science. LetM be the
space of (signed) Radon measures on the d-dimensional torus. Given
trigonometric moments of µ ∈M up to some order n ∈ N, i.e.

µ̂(k)
def.
=

∫
e−2ıπ〈k, x〉dµ(x), k ∈ {−n, . . . , n}d,

how can one recover or approximate the measure µ?
When µ is discrete, a wide variety of methods exist, that are able to

retrieve its parameters from a few of its moments. Examples include
subspace methods [1], [2], [3] and TV-minimization approaches [4].
The general case on the other hand is more involved. Finite rate
of innovation approaches generalize subspace methods to continuous
settings, but are restricted to specific curves [5], [6]. In another line
of work, one may also focus on approximation rather than exact
recovery. When the measure satisfies some regularity conditions,
Christoffel functions provide approximations of its density, with
guarantees with respect to the uniform norm [7], [8].

Similarly to [9], our approach requires no assumptions on the mea-
sure, except that it has finite total variation. We provide polynomial
estimates and tight bounds on the pointwise approximation as well
as with respect to the Wasserstein-1 distance. For details and proof
we refer the interested reader to [10].

Given µ, ν ∈M of equal mass, their Wasserstein-1 distance is

W1(µ, ν)
def.
= sup

Lip(f)61

∣∣∣∣∫
Td

f(x)d(µ− ν)(x)
∣∣∣∣ ,

where the Lipschitz constant is defined with respect to the wrap-
around distance d(x, y) = mink∈Zd ||x− y + k||1. The W1-distance
is well-defined for signed measures, and metrizes weak convergence.

Given µ ∈M and n ∈ N, the moment matrix of µ of order n is

Tn
def.
=
[
µ̂(k − l)

]
k,l∈{0,...,n}d .

We identify a vector p ∈ C(n+1)d with the trigonometric polynomial
p(x) =

∑
pke
−2ıπ〈k, x〉.

II. MAIN RESULTS

A. Polynomial approximations

Let µ ∈M. We consider the following polynomial

pn = Fn ∗ µ,

where Fn(x)
def.
= (n+ 1)−d

∏
j

sin2((n+1)πxj)

sin2(πxj)
is the Fejér kernel. It

can be computed efficiently using only Fast Fourier Transforms.
1) An upper bound: The next result establishes the weak conver-

gence of the measure with density pn towards µ.

Theorem 1 (Fejér approximation). For all n ∈ N∗, we have

W1(µ, pn) 6
d

π2

log(n+ 1) + 3

n
. (1)

2) Sharpness: The previous rate in O(n−1 log(n)) is matched for
µ = δ0. For an arbitrary measure, however regular it may be, a rate
of order n−1 is in any case the best that one can expect for pn.

Theorem 2 (Saturation). For every µ ∈ M not being the Lebesgue
measure, there exists a constant c(µ, d) such that

W1(µ, pn) >
c(µ, d)

n+ 1
.

3) Better estimates: Without any further assumption on the mea-
sure, the rate of n−1 in the previous lower bound is actually tight.

Theorem 3 (Best polynomial approximation). For any d, n ∈ N and
µ ∈ M, there exists a polynomial of best approximation p∗(µ) (of
degree at most n) in the Wasserstein-1 distance. It satisfies

sup
µ∈M

W1(µ, p
∗(µ)) >

1

4(n+ 1)
. (2)

The gap between (1) and (2) can be filled, e.g. by considering
convolution with the Jackson kernel J2n

def.
= αnF

2
n(x) (where αn is

a normalizing constant). Note that these rates can still be improved¸
at the cost of additional regularity assumptions on the measure.

B. Polynomial interpolation

We now assume that µ is nonnegative. Let r = rankTn, and let
u
(n)
j be the singular vectors (seen as polynomials) of Tn. We define

p1,n
def.
=

1

(n+ 1)d

r∑
j=1

|u(n)
j |

2.

Note that p1,n 6 1. If n is large enough, p1,n identifies the support.

Theorem 4. Let V def.
= Suppµ

Z
be the Zariski closure of the support.

For n large enough (and µ > 0), p1,n(x) = 1 if and only if x ∈ V .

Theorem 4 combined with the next result proves that p1,n con-
verges pointwisely towards the characteristic function of the support.

Theorem 5. Assume that V 6= Td. Let y ∈ Td \ V and let g be
a polynomial of degree m such that g(y) 6= 0 and g vanishes on
Suppµ. Then, for all n > m,

p1,n+m(y) 6
||g||2L2

|g(y)|
m(4m+ 2)d

n+ 1
+

dm

n+m+ 1
.

III. CONCLUSION

Handling measures via a limited number of moments is key to
computational efficiency in recovery algorithms. Our results provide
easily computable proxies for general measures on the torus, which
come with sharp bounds in terms of weak and pointwise convergence.
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