Rank Regularization

Fallstudien der mathematischen Modellbildung, Teil 2 20.10.2023 - 21.11.2023, paul.catala@tum.de

product\user	1	2	3	4	
1		3		1	
2	6		5	1	
3	3	2			
:			1	5	

 Recovery approach: every user's rating is a linear combination of a few representative ones

product\user	1	2	3	4	
1		3		1	
2	6		5	1	
3	3	2			
			1	5	

- Recovery approach: every user's rating is a linear combination of a few representative ones
- With $y = AX_0$, A being a restriction operator, solve

min rank(X) s.t. $A(X) = A(X_0)$

product\user	1	2	3	4	
1		3		1	
2	6		5	1	
3	3	2			
:			1	5	

- Recovery approach: every user's rating is a linear combination of a few representative ones
- With $y = AX_0$, A being a restriction operator, solve

min rank(X) s.t. $A(X) = A(X_0)$

■ rank $X = \#\{\text{non-zero singular values}\} = \|\sigma\|_0$ where $X = U \operatorname{diag}(\sigma)V^\top$ \Rightarrow Non-convex, combinatorial problem: consider convex relaxation

MATRIX NORMS

■ You already know operator norms

$$\|X\|_{E\to F} = \sup_{\|v\|_E \leqslant 1} \|Xv\|_F$$

In particular, if $\|\cdot\|_E = \|\cdot\|_F = \|\cdot\|_2$ then $\|X\|_{2\to 2} = \sigma_{\max}(X)$, also called spectral norm.

MATRIX NORMS

■ You already know operator norms

$$\|X\|_{E\to F} = \sup_{\|v\|_E \leqslant 1} \|Xv\|_F$$

In particular, if $\|\cdot\|_E = \|\cdot\|_F = \|\cdot\|_2$ then $\|X\|_{2\to 2} = \sigma_{\max}(X)$, also called spectral norm. • You already know $L_{p,q}$ -norms.

$$\|X\|_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |X_{ij}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$$

In particular, $\|X\|_{2,2} = \sqrt{\sum X_{ij}^2} = \sqrt{\operatorname{Tr}(X^\top X)} = \sqrt{\sum_{i=1}^{\min(m,n)} \sigma_i(X)^2}$ is the Frobenius norm.

Definition (Trace inner product).

$$\langle X, Y \rangle = \mathsf{Tr}(X^{\top}Y) = \mathsf{Tr}(XY^{\top}) = \sum X_{ij}Y_{ij}$$

MATRIX NORMS

You already know operator norms

$$\|X\|_{E\to F} = \sup_{\|v\|_E \leqslant 1} \|Xv\|_F$$

In particular, if $\|\cdot\|_E = \|\cdot\|_F = \|\cdot\|_2$ then $\|X\|_{2\to 2} = \sigma_{\max}(X)$, also called spectral norm. • You already know $L_{p,q}$ -norms.

$$\|X\|_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |X_{ij}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$$

In particular, $||X||_{2,2} = \sqrt{\sum X_{ij}^2} = \sqrt{\operatorname{Tr}(X^\top X)} = \sqrt{\sum_{i=1}^{\min(m,n)} \sigma_i(X)^2}$ is the Frobenius norm.

Definition (Trace inner product).

$$\langle X, Y \rangle = \mathsf{Tr}(X^{\top}Y) = \mathsf{Tr}(XY^{\top}) = \sum X_{ij}Y_{ij}$$

p-Schatten norms

$$\|X\|_{p} = \left(\sum_{i=1}^{\min(m,n)} \sigma_{i}(X)^{p}\right)^{\frac{1}{p}}$$

In particular,

- $||X||_2 = ||X||_F$
- $||X||_{\infty} = ||X||_{2 \to 2}$ (often denoted $||X||_2$, e.g. in MATLAB...)
- XI1: nuclear norm. Also denoted XI*

$$\label{eq:constraint} \begin{split} & \|\cdot\|_* \text{ is the dual norm of } \|\cdot\|_\infty \\ & \text{Recall the dual norm is: } \|y\|_* := \sup \left\{ \langle x, \, y \rangle \; ; \; \|x\| \leqslant 1 \right\} \end{split}$$

Theorem (Von Neumann's trace inequality). For $X, Y \in \mathbb{R}^{m \times n}$,

$$|\langle X, Y \rangle| \leq \sum_{i} \sigma_{i}(X) \sigma_{i}(Y)$$

with equality if X and Y share the same singular vectors.

Hence, assuming that $||X||_{\infty} = \sigma_{\max}(X) \leq 1$,

$$\langle X, Y \rangle \leq \sum \sigma_i(X) \sigma_i(Y) \leq \sum \sigma_i(Y) = \|Y\|_*$$

$$\label{eq:constraint} \begin{split} & \|\cdot\|_* \text{ is the dual norm of } \|\cdot\|_\infty \\ & \text{Recall the dual norm is: } \|y\|_* := \sup \left\{ \langle x, \, y \rangle \; ; \; \|x\| \leqslant 1 \right\} \end{split}$$

Theorem (Von Neumann's trace inequality). For $X, Y \in \mathbb{R}^{m \times n}$,

$$|\langle X, Y \rangle| \leq \sum_{i} \sigma_{i}(X) \sigma_{i}(Y)$$

with equality if X and Y share the same singular vectors.

Hence, assuming that $||X||_{\infty} = \sigma_{\max}(X) \leq 1$,

$$\langle X, Y \rangle \leq \sum \sigma_i(X) \sigma_i(Y) \leq \sum \sigma_i(Y) = \|Y\|_*$$

■ $||X||_*$ is the convex envelope of the rank

Theorem (Nuclear norm and rank). The convex envelope of $X \mapsto \operatorname{rank}(X)$ over the set $||X||_{\infty} \leq 1$, is $||X||_{*}$.

• Recall, for a vector
$$\sigma = (\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)$$
,

$$\partial \|\sigma\|_1 = \{(1, \dots, 1, x_{r+1}, \dots, x_n); |x_i| \leq 1\}$$

• Recall, for a vector
$$\sigma = (\sigma_1, \dots, \sigma_r, 0, \dots, 0),$$

 $\partial \|\sigma\|_1 = \{(1, \dots, 1, x_{r+1}, \dots, x_n) : |x_i| \leq 1$

Lemma (Watson, 1992). Let $\Phi(X) = \Phi(\Sigma)$ when $X = U\Sigma V^{\top}$, $\Sigma = Diag(\sigma)$. Then

$$\partial \Phi(X) = \operatorname{conv} \left\{ U \operatorname{diag}(d) V^{\top} ; \ d \in \partial \Phi(\sigma) \right\}$$

• Recall, for a vector
$$\sigma = (\sigma_1, \dots, \sigma_r, 0, \dots, 0)$$
,
 $\partial \|\sigma\|_1 = \{(1, \dots, 1, x_{r+1}, \dots, x_n); |x_i| \leq 1\}$

Lemma (Watson, 1992). Let $\Phi(X) = \Phi(\Sigma)$ when $X = U\Sigma V^{\top}$, $\Sigma = Diag(\sigma)$. Then

$$\partial \Phi(X) = \operatorname{conv} \left\{ U \operatorname{diag}(d) V^{\top} ; \ d \in \partial \Phi(\sigma) \right\}$$

Here $\Phi(X) = ||X||_*$, and for any $d \in \partial ||\sigma||_1$,

$$U \operatorname{diag}(d) V^{\top} = U_1 V_1^{\top} + U_2 \operatorname{diag}(w) V_2^{\top}$$

where $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$, $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$, where $|w_i| \leq 1$ for all *i*. U_1, V_1 are fixed, U_2, V_2 are arbitrary orthogonal complements: if $U^{(2)}, V^{(2)}$ are bases of (Ran U_1)^{\perp}, (Ran V_1)^{\perp} respectively, then

 $U_2 = U^{(2)}Y$, and $V_2 = V^{(2)}Z$

for some orthogonal $Y \in \mathbb{R}^{(m-r) \times (m-r)}, Z \in \mathbb{R}^{(n-r) \times (n-r)}$.

• Recall, for a vector
$$\sigma = (\sigma_1, \dots, \sigma_r, 0, \dots, 0)$$
,
 $\partial \|\sigma\|_1 = \{(1, \dots, 1, x_{r+1}, \dots, x_n); |x_i| \leq 1\}$

Lemma (Watson, 1992). Let $\Phi(X) = \Phi(\Sigma)$ when $X = U\Sigma V^{\top}$, $\Sigma = Diag(\sigma)$. Then

$$\partial \Phi(X) = \operatorname{conv} \left\{ U \operatorname{diag}(d) V^{\top} ; \ d \in \partial \Phi(\sigma) \right\}$$

Here $\Phi(X) = ||X||_*$, and for any $d \in \partial ||\sigma||_1$,

$$U \operatorname{diag}(d) V^{\top} = U_1 V_1^{\top} + U_2 \operatorname{diag}(w) V_2^{\top}$$

where $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$, $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$, where $|w_i| \le 1$ for all *i*.

 U_1, V_1 are fixed, U_2, V_2 are arbitrary orthogonal complements: if $U^{(2)}, V^{(2)}$ are bases of (Ran U_1)^{\perp}, (Ran V_1)^{\perp} respectively, then

$$U_2 = U^{(2)}Y$$
, and $V_2 = V^{(2)}Z$

for some orthogonal $Y \in \mathbb{R}^{(m-r) \times (m-r)}, Z \in \mathbb{R}^{(n-r) \times (n-r)}$.

Convex envelope: let $\sum \lambda_i =$ 1, $\lambda_i \ge$ 0, an element in the convex hull is of the form

$$U_1 V_1^{\top} + \sum_i \lambda_i U_{2,i} \operatorname{diag}(w_i) V_{2,i}^{\top} = U_1 V_1^{\top} + U^{(2)} \left(\sum_i \lambda_i Y_i \operatorname{diag}(w_i) Z_i^{\top} \right) V^{(2)\top}$$

and $\|\sum \lambda_i Y_i \operatorname{diag}(w_i) Z_i^{\top} \|_{\infty} \leq \sum \lambda_i \max(|w_i|) \leq 1$

Hence the convex envelope is

$$\partial \|X\|_1 = \left\{ U_1 V_1^\top + U^{(2)} W V^{(2)\top} \ ; \ \|W\|_\infty \leqslant 1 \right\}$$

or equivalently

$$\partial \|X\|_1 = \left\{ U_1 V_1^\top + Z \ ; \ U_1^\top Z = 0, \quad ZV_1 = 0, \quad \|Z\|_\infty \leqslant 1 \right\}$$

Proposition (Proximity operator of the nuclear norm).

$$\operatorname{argmin}_{X} \gamma \|X\|_{*} + \frac{1}{2} \|X - Y\|_{F}^{2} = US_{\gamma}(\Sigma)V^{T} =: S_{\gamma}(Y)$$

where $Y = U\Sigma V^*$ and S_{λ} is the soft-thresholding operator, applied entry-wise to the diagonal matrix of singular values $(S_{\lambda}(\sigma) = (\sigma - \lambda)_+, \text{ since } \sigma \ge 0)$.

Proposition (Proximity operator of the nuclear norm).

$$\operatorname{argmin}_{X} \gamma \|X\|_{*} + \frac{1}{2} \|X - Y\|_{F}^{2} = US_{\gamma}(\Sigma)V^{T} =: S_{\gamma}(Y)$$

where $Y = U\Sigma V^*$ and S_{λ} is the soft-thresholding operator, applied entry-wise to the diagonal matrix of singular values ($S_{\lambda}(\sigma) = (\sigma - \lambda)_+$, since $\sigma \ge 0$).

Proof. The objective is strongly convex, so X is the (unique) minimizer if and only if

$$0 \in \partial \|X\|_* + \frac{1}{\gamma}(X - Y)$$

Let $Y = U_1 \Sigma_1 V_1^\top + U_2 \Sigma_2 V_2^\top$, where $\operatorname{diag}(\Sigma_1) > \gamma$ and $\operatorname{diag}(\Sigma_2) \leqslant \gamma$, and let $\hat{X} = U_1 (\Sigma_1 - \gamma) V_1^\top = U S_{\gamma}(\Sigma) V^\top$. Proposition (Proximity operator of the nuclear norm).

$$\operatorname{argmin}_{X} \gamma \|X\|_{*} + \frac{1}{2} \|X - Y\|_{F}^{2} = US_{\gamma}(\Sigma)V^{T} =: S_{\gamma}(Y)$$

where $Y = U\Sigma V^*$ and S_{λ} is the soft-thresholding operator, applied entry-wise to the diagonal matrix of singular values ($S_{\lambda}(\sigma) = (\sigma - \lambda)_+$, since $\sigma \ge 0$).

Proof. The objective is strongly convex, so X is the (unique) minimizer if and only if $0 \in \partial \|X\|_* + \frac{1}{\gamma}(X - Y)$

Let $Y = U_1 \Sigma_1 V_1^\top + U_2 \Sigma_2 V_2^\top$, where $\operatorname{diag}(\Sigma_1) > \gamma$ and $\operatorname{diag}(\Sigma_2) \leqslant \gamma$, and let $\hat{X} = U_1 (\Sigma_1 - \gamma) V_1^\top = U S_{\gamma}(\Sigma) V^\top$.

Then

$$Y - \hat{X} = \gamma (U_1 V_1^\top + U_2 \operatorname{Diag}(d) V_2^\top)$$
 where $|d_i| \leqslant 1$,

and therefore

$$\frac{1}{\gamma}(Y - \hat{X}) \in \partial \|\hat{X}\|_*$$

i.e.

$$0 \in \partial \|\hat{X}\|_* + \frac{1}{\gamma}(\hat{X} - Y)$$

Relax rank minimization problem into

$$\min \|X\|_{*} \quad \text{s.t.} \quad A(X) = A(X_{0}), \tag{NN}$$

or in the penalized form

$$\min \|X\|_* + \frac{\lambda}{2} \|A(X - X_0)\|_F^2$$

- Forward-Backward splitting scheme:
 - gradient descent step: $Y_k = X_k + \delta A^{\top} A(X X_0) = X_k \delta A(X X_0)$
 - proximal step: $X_{k+1} = S_{\lambda}(Y_k)$

• When $X \succeq 0$ (semidefinite positive), then $||X||_* = \text{Tr}(X) = \sum \sigma_i$, and the minimization problem becomes

min Tr(X) s.t.
$$A(X) = y$$
, $X \succeq 0$

This type of problem is called a semidefinite programming problem. This is a well-known type of problem, with dedicated solvers (*e.g.* interior points algorithms)

• When $X \succeq 0$ (semidefinite positive), then $||X||_* = \text{Tr}(X) = \sum \sigma_i$, and the minimization problem becomes

min Tr(X) s.t.
$$A(X) = y$$
, $X \succeq 0$

- This type of problem is called a semidefinite programming problem. This is a well-known type of problem, with dedicated solvers (*e.g.* interior points algorithms)
- There is actually a strong connection between (NN) and semidefinite programming: one can show that (NN) is equivalent to

min Tr(Y) s.t.
$$Y = \begin{bmatrix} W_1 & X \\ X^{\top} & W_2 \end{bmatrix} \succeq 0, \quad A(X) = y$$

for some W_1, W_2 .

Diffraction imaging:

Intensity measurements are of the form

$$y_{ik} = |(FM_k x)_i|^2, \quad i \in 2D$$
-grid

where *F* is the Fourier transform, M_k is a mask. More simply, $y_j = |a_j^T x|^2$ for some a_j , j = 1, ..., m > n. The inverse problem of recovering *x* from *y* is called phase retrieval because the modulus "kills" the phase.

Phase retrieval is a feasibility problem

find x s.t.
$$y_j = |a_j^\top x|^2$$

which is difficult (non-convex).

• Idea: look for $X = xx^{\top}$, with

$$y_j = |a_j^\top x|^2 = x^\top a_j a_j^\top x = \mathsf{Tr}(a_j a_j^\top x x^\top) = \mathsf{Tr}(A_j X) = \langle A_j, X \rangle$$

and $rank(X) = 1, X \succeq 0$. So the problem can "lifted" as

$$\mathsf{min\,rank}(X) \quad \text{s.t.} \quad X \succeq 0, \quad \langle \mathsf{A}_j, X \rangle = y_j \; \forall j$$

Relax into a convex SDP as

min Tr(X) s.t.
$$X \succeq 0$$
, $\langle A_j, X \rangle = y_j$

¹PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements vie Convex Programming, Candès et al., 2013