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B Recovery approach: every user’s rating is a linear combination of a few representative
ones

m With y = AX,, A being a restriction operator, solve
min rank(X) st A(X) = A(Xo)

m rank X = #{non-zero singular values} = |o|o where X = Udiag(o)V T
= Non-convex, combinatorial problem: consider convex relaxation
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n m % q
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In particular, [X2,, = /3 X2 = /Tr(XTX) = S min(mn) 5 (X)2 is the Frobenius norm.

Definition (Trace inner product).
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m p-Schatten norms
min(m,n) %
Klo=| > aiX)P
i=1
In particular,

o [Xl2 = IX]r
o |X|oo = |X|2—2 (often denoted |X|2, e.g. in MATLAB...)
e |X|+: nuclear norm. Also denoted | X]« 2
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m |- |« isthedual normof | - oo
Recall the dual norm is: |y|l« :=sup {{x, y) ; |x]| < 1}

Theorem (Von Neumann'’s trace inequality). For X,Y € R™>n,

(X, V) < D oi(X)ai(Y)

I

with equality if X and Y share the same singular vectors.
Hence, assuming that [X]eo = omax(X) <1,

X, V) <D ai)ei(Y) < DoY) = IVl

m X« is the convex envelope of the rank

Theorem (Nuclear norm and rank). The convex envelope of X — rank(X) over the set
Xlloo < 1 is X[
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m Lemma (Watson, 1992). Let ®(X) = ®(X) when X = UXVT, ¥ = Diag(c). Then

od(X) = conv{Udiag(d)V—r pde BCD(U)}

Here ®(X) = |X||«, and for any d € 9|a]s,
Udiag(d)VT = UV + U, diag(w)V,"
where U = [U1 Uz] V= |:V1 Vz], where |w;| < 1foralli.
Us, V4 are fixed, Uy, V; are arbitrary orthogonal complements: if U®), V(2 are bases of
(Ran Uq)*, (Ran V4)* respectively, then
U =U®Y, and v, =v7

for some orthogonal Y € R(M=nx(m=r) 7 ¢ R(n=r)x(n—r),
Convex envelope: let >~ Aj =1, Aj = 0, an element in the convex hull is of the form

UV + D AUy diag(w))Vy = UrVyT + U®) <Z AYi diag(W,')Z,T> VT

1 1

and | 32 A diag(W)Z, oo < 30 A max(|w;]) < 1



SUBDIFFERENTIAL OF THE NUCLEAR NORM

m Hence the convex envelope is
Ol = {uvT +UOWAT ; W <1}

or equivalently

ol = {uvT +2; uTz=0, 2=0, |Zleo <1}
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m Proposition (Proximity operator of the nuclear norm).
. 1
argming 7IX[. + 3 X — Y[} = US ()" =: 5,(v)

where Y = UXV* and S, is the soft-thresholding operator, applied entry-wise to the
diagonal matrix of singular values (Sx(c) = (o — \)4, since o > 0).

Proof. The objective is strongly convex, so X is the (unique) minimizer if and only if
1
0 € X« + ;(X =)

Let Y = Ui VT + Uo%,V,)T, where diag(Z1) > v and diag(X;) < ~, and let
K= U(Z1 —y)V = US,(Z)VT.
Then
Y — R =~(U1Vy| + U, Diag(d)V,") where |dj] <1,
and therefore

1 o
:/(Y—X) € I|X|«

o 1 o
0 € 9X|« + ;(Xf Y)



NUCLEAR NORM MINIMIZATION

m Relax rank minimization problem into
min |X|« st AX) = A(Xo), (NN)
or in the penalized form
. A 2
min X[« + = JAX = Xo)I7
m Forward-Backward splitting scheme:

- gradient descent step: Y, = X; + 6ATAX — Xo) = Xp — SA(X — Xo)
- proximal step: Xpq = Sx(Yk)



SEMIDEFINITE REFORMULATION

m When X = 0 (semidefinite positive), then |X|« = Tr(X) = > o}, and the minimization
problem becomes
min Tr(X) st. AX)=y, X>0
m This type of problem is called a semidefinite programming problem. This is a well-known
type of problem, with dedicated solvers (e.g. interior points algorithms)
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m When X = 0 (semidefinite positive), then |X|« = Tr(X) = > o}, and the minimization
problem becomes
min Tr(X) st. AX)=y, X>0
m This type of problem is called a semidefinite programming problem. This is a well-known
type of problem, with dedicated solvers (e.g. interior points algorithms)

m There is actually a strong connection between (NN) and semidefinite programming: one
can show that (NN) is equivalent to

min Tr(Y) st Y:{W1 X1 w0, AX) =y

XT W,

for some Wy, W,.



PHASE RETRIEVAL

m Diffraction imaging:

bar ) (jedt) (“m/ Cdarechin)

Intensity measurements are of the form
Yie = |(FMex)i|?, i € 2D-grid

where F is the Fourier transform, My, is a mask. More simply, y; = \al.Tx|2 for some aj,
j=1,...,m > n. The inverse problem of recovering x from y is called phase retrieval
because the modulus "kills” the phase.

m Phase retrieval is a feasibility problem
find x sty =la’x?

which is difficult (non-convex).



SEMIDEFINITE LIFTING'

m Idea: look for X = xx T, with
yj = la x> = x"aqja x = Tr(gja xx ) = Tr(AX) = (4, X)
and rank(X) =1, X = 0. So the problem can "lifted” as
minrank(X) st X>=0, (A, X)=yV

m Relax into a convex SDP as

minTr(X) st X =0, (A, X)=Y;

WPhaseu/t: Exact and Stable Signal Recovery from Magnitude Measurements vie Convex Programming, Candeés et al., 2013



