Rank Regularization

Fallstudien der mathematischen Modellbildung, Teil 2 20.10.2023 - 21.11.2023, paul.catala@tum.de

 Recovery approach: every user's rating is a linear combination of a few representative ones

- Recovery approach: every user's rating is a linear combination of a few representative ones
- With $y = AX_0$, A being a restriction operator, solve

min rank(*X*) s.t. $A(X) = A(X_0)$

- Recovery approach: every user's rating is a linear combination of a few representative ones
- With $y = AX_0$, A being a restriction operator, solve

$$
min \quad rank(X) \quad s.t. \quad A(X) = A(X_0)
$$

 \blacksquare rank $X = \#\{\text{non-zero singular values}\} = \|\sigma\|_0$ where $X = U \text{diag}(\sigma) V^\top$ ⇒ Non-convex, combinatorial problem: consider convex relaxation

MATRIX NORMS

■ You already know operator norms

$$
\|X\|_{E\to F}=\sup_{\|V\|_E\leqslant 1}\|Xv\|_F
$$

In particular, if $\|\cdot\|_E = \|\cdot\|_F = \|\cdot\|_2$ then $\|X\|_{2\to 2} = \sigma_{\text{max}}(X)$, also called spectral norm.

MATRIX NORMS

■ You already know operator norms

$$
\|X\|_{E\to F}=\sup_{\|V\|_E\leqslant 1}\|Xv\|_F
$$

In particular, if $\|\cdot\|_E = \|\cdot\|_F = \|\cdot\|_2$ then $\|X\|_{2\to 2} = \sigma_{\text{max}}(X)$, also called spectral norm. ■ You already know *L_{p,q}*-norms.

$$
||X||_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |X_{ij}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}
$$

In particular, $\|X\|_{2,2} = \sqrt{\sum X_{ij}^2} = \sqrt{\textsf{Tr}(X^\top X)} = \sqrt{\sum_{i=1}^{\min(m,n)} \sigma_i(X)^2}$ is the Frobenius norm.

Definition (Trace inner product).

$$
\langle X, Y \rangle = \text{Tr}(X^{\top}Y) = \text{Tr}(XY^{\top}) = \sum X_{ij}Y_{ij}
$$

MATRIX NORMS

■ You already know operator norms

$$
\|X\|_{E\to F}=\sup_{\|V\|_E\leqslant 1}\|Xv\|_F
$$

In particular, if $\|\cdot\|_F = \|\cdot\|_F = \|\cdot\|_2$ then $\|X\|_{2\to 2} = \sigma_{\text{max}}(X)$, also called spectral norm. ■ You already know *L_{p,q}*-norms.

$$
||X||_{p,q} = \left(\sum_{j=1}^n \left(\sum_{i=1}^m |X_{ij}|^p\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}
$$

In particular, $\|X\|_{2,2} = \sqrt{\sum X_{ij}^2} = \sqrt{\textsf{Tr}(X^\top X)} = \sqrt{\sum_{i=1}^{\min(m,n)} \sigma_i(X)^2}$ is the Frobenius norm.

Definition (Trace inner product).

$$
\langle X, Y \rangle = \text{Tr}(X^{\top}Y) = \text{Tr}(XY^{\top}) = \sum X_{ij}Y_{ij}
$$

■ *p*-Schatten norms

$$
\|X\|_p = \left(\sum_{i=1}^{\min(m,n)} \sigma_i(X)^p\right)^{\frac{1}{p}}
$$

In particular,

- $||X||_2 = ||X||_F$
- $||X||_{\infty} = ||X||_{2\to 2}$ (often denoted $||X||_2$, *e.g.* in MATLAB...)
- ||*X*||1: nuclear norm. Also denoted ||*X*||[∗]

 \blacksquare | \cdot |* is the dual norm of $\|\cdot\|_{\infty}$ Recall the dual norm is: $||y||_* := \sup \{\langle x, y \rangle : ||x|| \leq 1\}$

Theorem (Von Neumann's trace inequality). For *X*, *Y* ∈ R*m*×*ⁿ* ,

$$
|\langle X, Y\rangle| \leqslant \sum_i \sigma_i(X)\sigma_i(Y)
$$

with equality if *X* and *Y* share the same singular vectors.

Hence, assuming that $||X||_{\infty} = \sigma_{\text{max}}(X) \leq 1$,

$$
\langle X, Y \rangle \leq \sum \sigma_i(X) \sigma_i(Y) \leq \sum \sigma_i(Y) = ||Y||_*
$$

 $\| \cdot \|_*$ is the dual norm of $\| \cdot \|_{\infty}$ Recall the dual norm is: $||y||_* := \sup \{\langle x, y \rangle : ||x|| \leq 1\}$

Theorem (Von Neumann's trace inequality). For *X*, *Y* ∈ R*m*×*ⁿ* ,

$$
|\langle X, Y\rangle| \leqslant \sum_i \sigma_i(X)\sigma_i(Y)
$$

with equality if *X* and *Y* share the same singular vectors.

Hence, assuming that $||X||_{\infty} = \sigma_{\text{max}}(X) \leq 1$,

$$
\langle X, Y \rangle \leqslant \sum \sigma_i(X) \sigma_i(Y) \leqslant \sum \sigma_i(Y) = \|Y\|_*
$$

||*X*||[∗] is the convex envelope of the rank

Theorem (Nuclear norm and rank). The convex envelope of $X \mapsto \text{rank}(X)$ over the set ||*X*||[∞] 6 1, is ||*X*||∗.

Recall, for a vector
$$
\sigma = (\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)
$$
,

$$
\partial \|\sigma\|_1 = \{ (1, \ldots, 1, x_{r+1}, \ldots, x_n) ; |x_i| \leq 1 \}
$$

Recall, for a vector
$$
\sigma = (\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)
$$
,

$$
\partial \|\sigma\|_1 = \{ (1, \ldots, 1, x_{r+1}, \ldots, x_n) ; |x_i| \leq 1 \}
$$

■ Lemma (Watson, 1992). Let $Φ(X) = Φ(\Sigma)$ when $X = U\Sigma V^\top$, $\Sigma = \text{Diag}(σ)$. Then

$$
\partial \Phi(X) = \text{conv}\left\{U \text{diag}(d)V^\top \, ; \, d \in \partial \Phi(\sigma)\right\}
$$

Recall, for a vector
$$
\sigma = (\sigma_1, \ldots, \sigma_r, 0, \ldots, 0),
$$

$$
\partial \|\sigma\|_1 = \{ (1, \ldots, 1, x_{r+1}, \ldots, x_n) ; |x_i| \leq 1 \}
$$

■ Lemma (Watson, 1992). Let $Φ(X) = Φ(Σ)$ when $X = UΣV[⊤]$, $Σ = Diag(σ)$. Then

$$
\partial \Phi(X) = \text{conv}\left\{U \text{diag}(d)V^\top \; ; \; d \in \partial \Phi(\sigma)\right\}
$$

Here $\Phi(X) = \|X\|_*$, and for any $d \in \partial \|\sigma\|_1$,

$$
U \operatorname{diag}(d) V^{\top} = U_1 V_1^{\top} + U_2 \operatorname{diag}(w) V_2^{\top}
$$

where $U=\begin{bmatrix}U_1&U_2\end{bmatrix}$, $V=\begin{bmatrix}V_1&V_2\end{bmatrix}$, where $|w_i|\leqslant 1$ for all *i*. U_1, V_1 are fixed, U_2, V_2 are arbitrary orthogonal complements: if $U^{(2)}, V^{(2)}$ are bases of $(Ran U_1)^{\perp}$, $(Ran V_1)^{\perp}$ respectively, then

$$
U_2 = U^{(2)}Y
$$
, and $V_2 = V^{(2)}Z$

for some *orthogonal* $Y \in \mathbb{R}^{(m-r)\times(m-r)}, Z \in \mathbb{R}^{(n-r)\times(n-r)}$.

Recall, for a vector
$$
\sigma = (\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)
$$
,

$$
\partial \|\sigma\|_1 = \{ (1, \ldots, 1, x_{r+1}, \ldots, x_n) ; |x_i| \leq 1 \}
$$

■ Lemma (Watson, 1992). Let $Φ(X) = Φ(Σ)$ when $X = UΣV[⊤]$, $Σ = Diag(σ)$. Then

$$
\partial \Phi(X) = \text{conv}\left\{U \text{diag}(d)V^\top \, ; \, d \in \partial \Phi(\sigma)\right\}
$$

Here $\Phi(X) = \|X\|_*$, and for any $d \in \partial \|\sigma\|_1$,

$$
U \operatorname{diag}(d)V^{\top} = U_1 V_1^{\top} + U_2 \operatorname{diag}(w) V_2^{\top}
$$

where $U=\begin{bmatrix}U_1&U_2\end{bmatrix}$, $V=\begin{bmatrix}V_1&V_2\end{bmatrix}$, where $|w_i|\leqslant 1$ for all *i*. U_1, V_1 are fixed, U_2, V_2 are arbitrary orthogonal complements: if $U^{(2)}, V^{(2)}$ are bases of $(Ran U_1)^{\perp}$, $(Ran V_1)^{\perp}$ respectively, then

$$
U_2 = U^{(2)}Y
$$
, and $V_2 = V^{(2)}Z$

for some *orthogonal* $Y \in \mathbb{R}^{(m-r)\times(m-r)}, Z \in \mathbb{R}^{(n-r)\times(n-r)}$.

Convex envelope: let $\sum \lambda_i = 1$, $\lambda_i \geq 0$, an element in the convex hull is of the form

$$
U_1 V_1^{\top} + \sum_i \lambda_i U_{2,i} \operatorname{diag}(w_i) V_{2,i}^{\top} = U_1 V_1^{\top} + U^{(2)} \left(\sum_i \lambda_i Y_i \operatorname{diag}(w_i) Z_i^{\top} \right) V^{(2)\top}
$$

and $\|\sum \lambda_i Y_i \operatorname{diag}(W_i) Z_i^\top\|_{\infty} \leqslant \sum \lambda_i \max(|W_i|) \leqslant 1$

Hence the convex envelope is

$$
\partial\|X\|_1=\left\{U_1V_1^\top+U^{(2)}W V^{(2)\top}~;~\|W\|_\infty\leqslant 1\right\}
$$

or equivalently

$$
\partial \lVert X \rVert_1 = \left\{ U_1 V_1^\top + Z \; ; \; U_1^\top Z = 0, \quad Z V_1 = 0, \quad \lVert Z \rVert_\infty \leqslant 1 \right\}
$$

Proximal Operator of the Nuclear Norm

■ *Proposition (Proximity operator of the nuclear norm).*

$$
\operatorname{argmin}_{X} \gamma \|X\|_{*} + \frac{1}{2} \|X - Y\|_{F}^{2} = US_{\gamma}(\Sigma)V^{T} =: S_{\gamma}(Y)
$$

where *Y* = *U*Σ*V* [∗] and *S*^λ is the soft-thresholding operator, applied entry-wise to the diagonal matrix of singular values $(S_{\lambda}(\sigma) = (\sigma - \lambda)_{+}$, since $\sigma \ge 0$).

■ *Proposition (Proximity operator of the nuclear norm).*

$$
\operatorname{argmin}_{X} \gamma \|X\|_{*} + \frac{1}{2} \|X - Y\|_{F}^{2} = US_{\gamma}(\Sigma)V^{T} =: S_{\gamma}(Y)
$$

where *Y* = *U*Σ*V* [∗] and *S*^λ is the soft-thresholding operator, applied entry-wise to the diagonal matrix of singular values $(S_{\lambda}(\sigma) = (\sigma - \lambda)_{+}$, since $\sigma \ge 0$).

Proof. The objective is strongly convex, so *X* is the (unique) minimizer if and only if

$$
0\in\partial\|X\|_{*}+\frac{1}{\gamma}(X-Y)
$$

Let $Y = U_1 \Sigma_1 V_1^\top + U_2 \Sigma_2 V_2^\top$, where $\text{diag}(\Sigma_1) > \gamma$ and $\text{diag}(\Sigma_2) \leq \gamma$, and let $\hat{X} = U_1(\Sigma_1 - \gamma)V_1^{\top} = US_{\gamma}(\Sigma)V^{\top}.$

■ *Proposition (Proximity operator of the nuclear norm).*

$$
\operatorname{argmin}_{X} \gamma \|X\|_{*} + \frac{1}{2} \|X - Y\|_{F}^{2} = US_{\gamma}(\Sigma)V^{T} =: S_{\gamma}(Y)
$$

where *Y* = *U*Σ*V* [∗] and *S*^λ is the soft-thresholding operator, applied entry-wise to the diagonal matrix of singular values $(S_{\lambda}(\sigma) = (\sigma - \lambda)_{+}$, since $\sigma \ge 0$).

Proof. The objective is strongly convex, so *X* is the (unique) minimizer if and only if

$$
0\in\partial\|X\|_*+\frac{1}{\gamma}(X-Y)
$$

Let
$$
Y = U_1 \Sigma_1 V_1^{\top} + U_2 \Sigma_2 V_2^{\top}
$$
, where $\text{diag}(\Sigma_1) > \gamma$ and $\text{diag}(\Sigma_2) \le \gamma$, and let
\n
$$
\hat{X} = U_1(\Sigma_1 - \gamma) V_1^{\top} = U S_{\gamma}(\Sigma) V^{\top}.
$$

Then

$$
Y - \hat{X} = \gamma (U_1 V_1^\top + U_2 \operatorname{Diag}(d) V_2^\top) \quad \text{where} \quad |d_i| \leq 1,
$$

and therefore

$$
\frac{1}{\gamma}(Y-\hat{X})\in \partial \|\hat{X}\|_*
$$

i.e.

$$
0\in\partial\|\hat{X}\|_*+\frac{1}{\gamma}(\hat{X}-Y)
$$

Relax rank minimization problem into

$$
\min \|X\|_{*} \quad \text{s.t.} \quad A(X) = A(X_0), \tag{NN}
$$

or in the penalized form

$$
\min \|X\|_{*} + \frac{\lambda}{2} \|A(X - X_0)\|_{F}^{2}
$$

- Forward-Backward splitting scheme:
	- gradient descent step: $Y_k = X_k + \delta A^\top A(X X_0) = X_k \delta A(X X_0)$
	- proximal step: $X_{k+1} = S_{\lambda}(Y_k)$

■ When *X* \succeq 0 (semidefinite positive), then $||X||_* = Tr(X) = \sum \sigma_i$, and the minimization problem becomes

$$
\min \mathsf{Tr}(X) \quad \text{s.t.} \quad A(X) = y, \quad X \succeq 0
$$

■ This type of problem is called a semidefinite programming problem. This is a well-known type of problem, with dedicated solvers (*e.g.* interior points algorithms)

■ When *X* \succeq 0 (semidefinite positive), then $||X||_* = Tr(X) = \sum \sigma_i$, and the minimization problem becomes

$$
\min \mathsf{Tr}(X) \quad \text{s.t.} \quad A(X) = y, \quad X \succeq 0
$$

- This type of problem is called a semidefinite programming problem. This is a well-known type of problem, with dedicated solvers (*e.g.* interior points algorithms)
- There is actually a strong connection between [\(NN\)](#page-17-0) and semidefinite programming: one can show that [\(NN\)](#page-17-0) is equivalent to

$$
\text{min Tr}(Y) \quad \text{s.t.} \quad Y = \begin{bmatrix} W_1 & X \\ X^T & W_2 \end{bmatrix} \succeq 0, \quad A(X) = y
$$

for some W_1, W_2 .

Diffraction imaging:

Intensity measurements are of the form

$$
y_{ik} = |(\mathit{FM}_k x)_i|^2, \quad i \in 2D\text{-grid}
$$

where F is the Fourier transform, M_k is a mask. More simply, $y_j = |a_j^{\top}x|^2$ for some a_j , $j = 1, \ldots, m > n$. The inverse problem of recovering x from y is called phase retrieval because the modulus "kills" the phase.

 \blacksquare Phase retrieval is a feasibility problem

find x s.t.
$$
y_j = |a_j^\top x|^2
$$

which is difficult (non-convex).

I Idea: look for $X = xx^{\top}$, with

$$
y_j = |a_j^\top x|^2 = x^\top a_j a_j^\top x = \text{Tr}(a_j a_j^\top x x^\top) = \text{Tr}(A_j X) = \langle A_j, X \rangle
$$

and rank $(X) = 1, X \succeq 0$. So the problem can "lifted" as

$$
\min \text{rank}(X) \quad \text{s.t.} \quad X \succeq 0, \quad \langle A_j, X \rangle = y_j \; \forall j
$$

Relax into a convex SDP as

$$
\min \text{Tr}(X) \quad \text{s.t.} \quad X \succeq 0, \quad \langle A_j, X \rangle = y_j
$$

¹ *PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements vie Convex Programming, Candès et al., 2013*