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Matrix Completion

product\user 1 2 3 4 . . .

1 3 1
2 6 5 1
3 3 2
... 1 5

� Recovery approach: every user’s rating is a linear combination of a few representative
ones

� With y = AX0 , A being a restriction operator, solve

min rank(X) s.t. A(X) = A(X0)

� rank X = #{non-zero singular values} = ||σ||0 where X = U diag(σ)V>

⇒ Non-convex, combinatorial problem: consider convex relaxation
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Matrix Norms

� You already know operator norms

||X||E→F = sup
||v||E61

||Xv||F

In particular, if || · ||E = || · ||F = || · ||2 then ||X||2→2 = σmax(X), also called spectral norm.

� You already know Lp,q-norms.

||X||p,q =

 n∑
j=1

( m∑
i=1

|Xij|p
) q

p


1
q

In particular, ||X||2,2 =
√∑

X2ij =
√

Tr(X>X) =
√∑min(m,n)

i=1 σi(X)2 is the Frobenius norm.

Definition (Trace inner product).

〈X, Y〉 = Tr(X>Y) = Tr(XY>) =
∑

XijYij

� p-Schatten norms

||X||p =

min(m,n)∑
i=1

σi(X)p
 1

p

In particular,
• ||X||2 = ||X||F
• ||X||∞ = ||X||2→2 (often denoted ||X||2 , e.g. in Matlab...)
• ||X||1 : nuclear norm. Also denoted ||X||∗
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Nuclear Norm

� || · ||∗ is the dual norm of || · ||∞
Recall the dual norm is: ||y||∗ := sup {〈x, y〉 ; ||x|| 6 1}

Theorem (Von Neumann’s trace inequality). For X, Y ∈ Rm×n ,

|〈X, Y〉| 6
∑
i

σi(X)σi(Y)

with equality if X and Y share the same singular vectors.

Hence, assuming that ||X||∞ = σmax(X) 6 1,

〈X, Y〉 6
∑

σi(X)σi(Y) 6
∑

σi(Y) = ||Y||∗

� ||X||∗ is the convex envelope of the rank

Theorem (Nuclear norm and rank). The convex envelope of X 7→ rank(X) over the set
||X||∞ 6 1, is ||X||∗ .
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Subdifferential of the Nuclear Norm

� Recall, for a vector σ = (σ1, . . . , σr , 0, . . . , 0),

∂||σ||1 = {(1, . . . , 1, xr+1, . . . , xn) ; |xi| 6 1}

� Lemma (Watson, 1992). Let Φ(X) = Φ(Σ) when X = UΣV> , Σ = Diag(σ). Then

∂Φ(X) = conv
{
U diag(d)V> ; d ∈ ∂Φ(σ)

}
Here Φ(X) = ||X||∗ , and for any d ∈ ∂||σ||1 ,

U diag(d)V> = U1V>1 + U2 diag(w)V>2

where U =
[
U1 U2

]
, V =

[
V1 V2

]
, where |wi| 6 1 for all i.

U1, V1 are fixed, U2, V2 are arbitrary orthogonal complements: if U(2), V(2) are bases of
(RanU1)⊥ , (Ran V1)⊥ respectively, then

U2 = U(2)Y, and V2 = V(2)Z

for some orthogonal Y ∈ R(m−r)×(m−r), Z ∈ R(n−r)×(n−r) .
Convex envelope: let

∑
λi = 1, λi > 0, an element in the convex hull is of the form

U1V>1 +
∑
i

λiU2,i diag(wi)V>2,i = U1V>1 + U(2)

(∑
i

λiYi diag(wi)Z>i

)
V(2)>

and ||
∑

λiYi diag(wi)Z>i ||∞ 6
∑

λimax(|wi|) 6 1
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Subdifferential of the Nuclear Norm

� Hence the convex envelope is

∂||X||1 =
{
U1V>1 + U(2)WV(2)> ; ||W||∞ 6 1

}
or equivalently

∂||X||1 =
{
U1V>1 + Z ; U>

1 Z = 0, ZV1 = 0, ||Z||∞ 6 1
}
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Proximal Operator of the Nuclear Norm

� Proposition (Proximity operator of the nuclear norm).

argminX γ||X||∗ +
1
2
||X − Y||2F = USγ(Σ)VT =: Sγ(Y)

where Y = UΣV∗ and Sλ is the soft-thresholding operator, applied entry-wise to the
diagonal matrix of singular values (Sλ(σ) = (σ − λ)+ , since σ > 0).

Proof. The objective is strongly convex, so X is the (unique) minimizer if and only if

0 ∈ ∂||X||∗ +
1
γ
(X − Y)

Let Y = U1Σ1V>1 + U2Σ2V>2 , where diag(Σ1) > γ and diag(Σ2) 6 γ, and let

X̂ = U1(Σ1 − γ)V>1 = USγ(Σ)V>.

Then
Y − X̂ = γ(U1V>1 + U2 Diag(d)V>2 ) where |di| 6 1,

and therefore
1
γ
(Y − X̂) ∈ ∂||X̂||∗

i.e.
0 ∈ ∂||X̂||∗ +

1
γ
(X̂ − Y)

�
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Nuclear Norm Minimization

� Relax rank minimization problem into

min ||X||∗ s.t. A(X) = A(X0), (NN)

or in the penalized form

min ||X||∗ +
λ

2
||A(X − X0)||2F

� Forward-Backward splitting scheme:
- gradient descent step: Yk = Xk + δA>A(X − X0) = Xk − δA(X − X0)
- proximal step: Xk+1 = Sλ(Yk)
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Semidefinite Reformulation

� When X � 0 (semidefinite positive), then ||X||∗ = Tr(X) =
∑

σi , and the minimization
problem becomes

minTr(X) s.t. A(X) = y, X � 0

� This type of problem is called a semidefinite programming problem. This is a well-known
type of problem, with dedicated solvers (e.g. interior points algorithms)

� There is actually a strong connection between (NN) and semidefinite programming: one
can show that (NN) is equivalent to

minTr(Y) s.t. Y =

[
W1 X
X> W2

]
� 0, A(X) = y

for some W1 ,W2 .
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Phase Retrieval

� Diffraction imaging:

Intensity measurements are of the form

yik = |(FMkx)i|2, i ∈ 2D-grid

where F is the Fourier transform, Mk is a mask. More simply, yj = |a>j x|
2 for some aj ,

j = 1, . . . ,m > n. The inverse problem of recovering x from y is called phase retrieval
because the modulus ”kills” the phase.

� Phase retrieval is a feasibility problem

find x s.t. yj = |a>j x|
2

which is difficult (non-convex).
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Semidefinite Lifting1

� Idea: look for X = xx> , with

yj = |a>j x|
2 = x>aja>j x = Tr(aja>j xx

>) = Tr(AjX) = 〈Aj, X〉

and rank(X) = 1, X � 0. So the problem can ”lifted” as

min rank(X) s.t. X � 0, 〈Aj, X〉 = yj ∀j

� Relax into a convex SDP as

minTr(X) s.t. X � 0, 〈Aj, X〉 = yj

1PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements vie Convex Programming, Candès et al., 2013
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