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Maximum Likelihood

� Stochastic forward model:
y = Ax + w

where w ∼i.i.d. N (0, σ2Id), and hence y ∼ N (Ax, σ2Id).

� The inverse problem is a Maximum Likelihood Estimation (MLE) problem:

x̂ = argmaxx p(y|x)

where p(y|x) is the likelihood (of y knowing x). In our example

p(y|x) =
1

(
√
2πσ2)n

n∏
i=1

exp

(
−
(yi − a>i x)

2

2σ2

)

(where we used the i.i.d. hypothesis).

� It is convenient to work with the log-likelihood

log p(y|x) = c0 −
1
2σ2

n∑
i=1

(yi − a>i x)
2 = c0 −

1
2σ2

||y − Ax||2

so x̂ is the solution of a least-squares regression.
→ A least-square fidelity is adapted for Gaussian i.i.d. noise
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Bayesian Interpretation of Regularization

� Variational formulations fidelity + regularity can be interpreted in the Bayesian framework.

� Bayesian treat x as a random variable as well, and put a prior distribution p(x) on it. The
Maximum A Posteriori (MAP) seeks the best estimate knowing the observed data, i.e.

x̃ = argmaxx p(x|y)

� By Bayes rule,

p(x|y) =
p(y|x)p(x)

p(y)

p(y|x) : likelihood (= model on the noise)
p(x) : prior distribution of the model
p(y) : marginal distribution of the data (normalizing constant)

� The MAP estimation becomes

argmax p(y|x)p(x) ⇐⇒ argmin E(x) := − log p(y|x)− log p(x)
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Gaussian Prior

� Assume x ∼i.i.d. N (0, τ 2). Then

log(p(x)) ∝ −
1
2τ 2

n∑
i=1

x2i = −
1
2τ 2

||x||2

and the MAP extimation reads gives

argmin
1
2σ2

||y − Ax||2 +
1
2τ 2

||x||22

� Conclusion: Gaussian prior ⇐⇒ `2-regularization, with parameter λ = σ2/τ 2
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Laplacian Prior

� Laplace distribution has density

p(xi) =
1
C
exp

(
−|xi − a|
2ρ2

)
where C is a normalizing constant.

� Assume x ∼i.i.d. Laplace(0, ρ2). Then

log p(x) ∝ −
1
2ρ2

n∑
i=1

|xi| = −
1
2ρ2

||x||1

and the MAP estimation gives

argmin
1
2σ2

||y − Ax||2 +
1
2ρ2

||x||1

� Conclusion: Laplace prior ⇐⇒ `1-regularization, with parameter λ = σ2/ρ2
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