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Sparsity

� Enforcing structure helps with ill-conditioning and under-determined systems.
A popular prior is sparsity, i.e. assuming the solution has only a few non-zero entries

xA

=

y

� Rationale: signals/data are often sparse in some basis / living on low-complexity domain.
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Regressor Selection

� If ci , i = 1, . . . , n denotes the columns of A, the system rewrites

y =
n∑
i=1

xici

(ci) is an over-complete basis (or dictionary), and the goal is to select a subset of this
basis that is sufficient to express y → regressor selection, or variable selection.

� A natural candidate to promote sparsity of solutions is the `0-norm

||x||0 = # {i ∈ {1, . . . , n} ; xi 6= 0}

! It is actually not a norm !

� The corresponding regularized problem is

min ||Ax − y||2 + λ||x||0

and in the noiseless case
min ||x||0 s.t. Ax = y
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Computational complexity

� Remember that the penalized form is always equivalent to a constrained form with
adequate parameter, i.e.

min
x∈Rn

||Ax − y||2 s.t. ||x||0 6 τ (1)

� NP-hard combinatorial, non-convex problem. Direct strategy: check every possible
sparsity pattern, i.e. fix subsets J of non-zero entries in x and solve the least-squares

min
x̃∈Rn

||AJx̃ − yJ||2

There are
(n
k
)
possible supports for each sparsity level→ infeasible for large n

� Possible approximations of the problem:
- Greedy algorithms (e.g. orthogonal matching pursuit)
- Convex relaxation
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Convex envelope

� Definition (Convex envelope). The convex envelope of a function I(x) is the largest convex
J(x) such that J(x) 6 I(x) .

� Theorem. The convex envelope of ||x||0 for x restricted to ||x||∞ 6 α is ||x||1/α
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Convex Relaxation

� Relax `0-penalty into `1-penalty

min ||Ax − y||22 + λ||x||1 (Lasso)

Called Lasso1 (Least Absolute Shrinkage and Selection Operator) or basis pursuit
denoising. When λ = 0, we obtain the basis pursuit2 problem

min ||x||1 s.t. Ax = y (BP)

� Main properties are:
Shrinkage: like Tikhonov regularization, Lasso penalizes large coefficients
Selection: unlike Tikhonov, Lasso produces sparse estimates

1Tibshirani, 1996
2Donoho, early 1990’s
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Lagrange Dual Function for Lasso

� We can reformulate the problem under a constrained form

min
1
2
||z − y||2 + λ||x||1 s.t. z = Ax

and deduce the Lagrangian:

L(x, z, ν) =
1
2
||z − y||2 + λ||x||1 + ν>(z − Ax)

� Minimization over z yields z̃ = y − ν . Minimization over x on the other hand is less
obvious, since we have lost differentiability

inf
x
λ||x||1 − 〈A>ν, x〉 = −

(
sup
x
〈A>ν, x〉 − λ||x||1

)
Definition (Conjugate function). The convex
conjugate of f : Rn → R is

f∗(y) = sup
x
〈y, x〉 − f (x)

With J(x) := λ||x||1 , the minimization over x and z yields

L(x̃, z̃, ν) = ν>y −
1
2
||ν||2 − J∗(A>ν)
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Dual Norm

� Definition (Dual norm). Given a norm || · || on Rn , the associated dual norm is

||y||∗ = sup
{
y>x ; ||x|| 6 1

}
Example. || · ||1 and || · ||∞ are dual to each other.

� Proposition. The conjugate function of ||x|| is

f∗(y) =
{
0 if ||y||∗ 6 1

∞ otherwise

Proof.1 If ||y||∗ > 1, then by definition there exists w ∈ Rn such that ||w|| 6 1 and y>w > 1.
Taking x = tw and letting t → ∞ we obtain

y>x − ||x|| = t(y>w − ||w||) → ∞,

hence f∗(y) = ∞. If ||y||∗ 6 1, since y>x 6 ||x||||y||∗ for all x, then y>x − ||x|| 6 0, and x = 0
is the maximizer.

1Boyd, Vandenberghe, Convex Optimization, Example 3.26
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Dual Lasso

� If J(x) = λ||x||1 , then J∗(y) is the indicator of {||y||∞ 6 λ}.

� Altogether, we obtain

L(x̃, z̃, ν) = ν>y −
1
2
||ν||2 − i{ν:||ν||∞6λ}(A>ν)

where we denote iC the indicator function of the set C. Hence the Lasso dual problem
reads

max ν>y −
1
2
||ν||2 s.t. ||A>ν||∞ 6 λ
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Subdifferential

|| · ||1 is convex but not differentiable at 0. How to derive optimality conditions?

� Recall the standard inequality for convex functions

f (y) > f (x) + 〈∇f (x), y − x〉

� Definition (Sub-differential). The sub-differential of f : Rn → R at x is

∂f (x) =
{
v ∈ Rn ; ∀y ∈ Rn, f (y) > f (x) + 〈v, y − x〉

}
Note that ∂f (x) is convex. If f is differentiable, then ∂f (x) = {∇f (x)}.

� Proposition. For any function f ,

x∗ = argminx f (x) ⇐⇒ 0 ∈ ∂f (x)

Proof. x∗ minimizer of f ⇐⇒ ∀x, f (x) > f (x∗) = f (x∗) + 〈0, x − x∗〉 ⇐⇒ 0 ∈ ∂f (x).
9



Subdifferential Calculus

Some basic rules

• ∂f (x) = {∇f (x)} if f is differentiable at x

• ∂(αf ) = α∂f if α > 0

• ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) (except in pathological cases: according to
Moreau-Rockafellar theorem, if there exists a point x0 ∈ dom(f1 + f2) such that f1 is
continuous at x0 , then the equality holds for any x ∈ dom(f1 + f2)).

• if g(x) = f (Ax + b) where f is convex, then ∂g(x) = A>∂f (Ax + b)
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Subdifferential of || · ||1

� |x| is differentiable at any x 6= 0 with derivative ±1. At 0,

(∀z ∈ R, |z| > yz) ⇐⇒ y ∈ [−1, 1]

so ∂0 = [−1, 1], and

∂|x| =


{1} if x > 0
[−1, 1] if x = 0
{−1} if x < 0

� Generalization:

v ∈ ∂||x||1 ⇐⇒ vi =
{
vi = sign(xi) if xi 6= 0

vi ∈ [−1, 1] if xi = 0

Proof. We have, by applying the calculus rules

||x||1 =
∑

|xi| =
∑

|e>i x|

hence
∂||x||1 =

∑
∂|e>i x| =

∑
ei∂|xi|

which leads to the desired result.
�
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Subdifferential and Conjugate Function

Let f : Rn → R. By definition of the conjugate function

∀x, y ∈ Rn, x>y 6 f (x) + f∗(y)

Equality occurs when y ∈ ∂f (x), i.e.

∀x, y ∈ Rn, x>y = f (x) + f∗(y) ⇐⇒ y ∈ ∂f (x)

Proof. We have

x>y > f (x) + f∗(y) ⇐⇒ x>y > f (x) + z>y − f (z) ∀z ∈ Rn

⇐⇒ f (z) > f (x) + 〈y, z − x〉 ∀z ∈ Rn

⇐⇒ y ∈ ∂f (x)

12



Optimality Conditions for Lasso

� The Lasso objective
f (x) :=

1
2
||Ax − y||2 + λ||x||1 (Lasso)

is not always strictly convex: it can have several minimizers. This is in constrast for
instance with the Tikhonov regularization

1
2
||Ax − y||2 + λ||x||22

which is strictly convex and always admits a unique minimizer when λ > 0.

� We can derive optimality conditions for Lasso

0 ∈ ∂f (x) = A>(Ax − y) + λ∂||x||1

Proposition (Lasso optimality). x∗ is a minimizer of (Lasso) if and only if there exists
η ∈ Rn such that

A>(Ax∗ − y) + λη = 0

where {
ηi = sign(x∗i) if x∗i 6= 0

ηi ∈ [−1, 1] if x∗i = 0
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The Othonormal Case

� If A satisfies A>A = I, there is a closed-form solution given by the soft thresholding
operator

Sλ(x) =


xi + λ if xi < −λ

0 if |xi| 6 λ

xi − λ if xi > λ

� In that case

min
1
2
||Ax − y||2 + λ||x||1 =

1
2
∑
i
(xi − (A>y)i)2 + λ

∑
i

|xi|,

so we may solve the minimization component by component (separable problem). Let
z := A>y and h : R → R, h(x) := 1

2 (x − z)2 + λ|x|. Then the optimality conditions give

0 ∈ ∂h(x) =


x − z − λ if x < 0

− z + λ[−1, 1] if x = 0

x − z + λ if x > 0

⇐⇒


x = z + λ if z < −λ

x = 0 if − λ 6 z 6 λ

x = z − λ if z > λ

� Therefore, a solution obeys x∗ = Sλ(A>y)
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Descent Methods

� In general, Lasso has no closed-form solution: one must resort to iterative algorithms to
approximate the solution.

� Gradient descent evolves in the direction of the negative gradient

xk+1 = xk − γ∇f (xk)

3 simple and cheap
3 can be fast for smooth (well-conditioned), strongly convex functions, with
convergence at least f (xt)− f (x∗) = O(c−t)

7 usually slow, with convergence f (xt)− f (x∗) = O(1/t)
7 cannot handle non-differentiable functions

� Subgradient descent uses any vector in the subdifferential instead of the gradient

xk+1 = xk − γgk, where gk ∈ ∂f (xk)

3 simple and cheap
7 sub-optimal solutions
7 slow, with convergence f (xt)− f (x∗) = O(1/

√
t)
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Proximal Methods

� Definition (Proximal Operator). For a convex f : Rn → R (or R), we define its proximal
operator as

proxγf (x) = argminy
1
2
||x − y||2 + γf (y)

� Connection with gradient descent: If f ∈ C1 , first order optimality yields

y = x − γ∇f (y) (= proxγf (x))

i.e. y is the point from which if you look backwards along −∇f (y), you reach x
- Gradient step: y − x = −γ∇f (x) (forward step)
- Proximal step: y − x = −γ∇f (y) (backward step)

If f ∈ C0 , then
0 ∈ γ∂f (y) + (y − x) ⇐⇒ x ∈ (I+ γ∂f )(y)

� Proximal operator generalizes projection: if f (x) = 1C(x) is an indicator function of a
convex set, then proxγf (x) = ProjC(x). More generally, proxγf (x) is an orthogonal
projection on a level set of f .
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Optimality Certificate

� Proposition (Fixed point). Let f : Rn → R (or R) be continuous convex. For any γ > 0,

x∗ ∈ argmin f (x) ⇐⇒ x∗ = proxγf (x∗)

Proof. We can assume without loss of generality that γ = 1. Suppose f (x) > f (x∗) for all
x. Then

f (x) +
1
2
||x − x∗||2 > f (x∗) +

1
2
||x∗ − x∗||2 =⇒ x∗ = argminx f (x) +

1
2
||x − x∗||2

=⇒ x∗ = proxf (x∗)

On the other hand, assume that x∗ = proxf (x∗). Then

0 ∈ ∂f (x∗) + x∗ − x∗ =⇒ 0 ∈ ∂f (x∗)

which shows that x∗ minimizes f .
�

� Proximal iterations: xk+1 = proxγf (xk) (fixed-point iterations)

Remark. prox is usually not a contraction (contraction = ||h(x)− h(y)|| 6 ρ||x − y|| with
ρ < 1), but it is nonexpansive, and slightly more, which ensures the convergence of fixed
point iterations.

17



Optimality Certificate

� Proposition (Fixed point). Let f : Rn → R (or R) be continuous convex. For any γ > 0,

x∗ ∈ argmin f (x) ⇐⇒ x∗ = proxγf (x∗)

Proof. We can assume without loss of generality that γ = 1. Suppose f (x) > f (x∗) for all
x. Then

f (x) +
1
2
||x − x∗||2 > f (x∗) +

1
2
||x∗ − x∗||2 =⇒ x∗ = argminx f (x) +

1
2
||x − x∗||2

=⇒ x∗ = proxf (x∗)

On the other hand, assume that x∗ = proxf (x∗). Then

0 ∈ ∂f (x∗) + x∗ − x∗ =⇒ 0 ∈ ∂f (x∗)

which shows that x∗ minimizes f .
�

� Proximal iterations: xk+1 = proxγf (xk) (fixed-point iterations)

Remark. prox is usually not a contraction (contraction = ||h(x)− h(y)|| 6 ρ||x − y|| with
ρ < 1), but it is nonexpansive, and slightly more, which ensures the convergence of fixed
point iterations.

17



Proximal Splitting

� Consider the generic problem
min F(x) + G(x)

where F ∈ C1 is differentiable, and G ∈ C0 is ”proximable” (i.e. we can easily project on its
level lines).

Then

0 ∈ ∇F(x) + ∂G(x) ⇐⇒ 0 ∈ (λ∇F(x)− x) + (x − ∂G(x))

⇐⇒ (I− γ∇F)(x) ∈ (I+ γ∂G)(x)

⇐⇒ x = (I+ γ∂G)−1(I− γ∇F)(x)

� Suggests updates of the form

xk+1 = proxγF(xk − γ∇F(xk))

This algorithm is called proximal gradient method, or forward-backward splitting.

� Convergence with rate O(1/k) when γ ∈ [0, 1/L] fixed, where ∇F is L-Lipschitz (L
corresponds to the conditioning of A in our case).
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corresponds to the conditioning of A in our case).
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Proximal Splitting

� Consider the generic problem
min F(x) + G(x)

where F ∈ C1 is differentiable, and G ∈ C0 is ”proximable” (i.e. we can easily project on its
level lines). Then
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Proximal Splitting for Lasso

� Recall the Lasso
min

1
2
||Ax − y||2 + λ||x||1 = ”smooth”+ ”simple”

� Proximal operator for || · ||1

proxλ||·||1 (x) = argminz
1
2
||x − z||2 + λ||z||1

We have already seen that proxλ||·||1 = Sλ(z)

� Iterative Soft-thresholding Algorithm (ISTA)

xk+1 = Sλ
(
xk −

1
κ(A)

A>(Axk − y)
)

� Choice of regularization parameter λ is, as always, sensitive
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Wavelet Sparsity

� Wavelet basis = orthonormal (Hilbert) basis of L2(Ω), and a fortiori of Rn

ψ
(θ)
a,b(x) =

1
√
a
ψ(θ)

(
x − b
a

)
Comparable to Fourier basis, but extracts both spatial and frequency information. Images
have sparse representation with respect to wavelets, i.e. 〈f , ψa,b〉 ' 0 often.

x ∈ Rn coefficients f = Ψx ∈ Rq image y = Kf + δ ∈ Rm data

A = K ◦Ψ ∈ Rm×n

� Wavelet Sparse Regularization

min
x∈Rn

||y − Ax||2 + ||x||1 (synthesis)

and the reconstructed image is then given by f = Ψx, or

min
f∈Rq

||y − Kf ||2 + ||Ψ>f ||1 (analysis)
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Wavelet Denoising

Corresponds to A = In : solution is given in closed-form by soft-thresholding.
Noisy, SNR=8.01

Soft denoising, SNR=17.6
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Tomography

min
f

||y −Rf ||2 + ||Ψ>f ||, where Rf (s, u) =
∫
R
f (su+ tu>)dt

SNR=9.16dB Sparsity in Orthogonal Wavelets, SNR=11.1dB

Original Pseudo-inverse ISTA
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TV regularization

� 1D discrete total variation

min
x

||Ax − y||2 + λ||Dx||1 where D =


1 −1

1 −1
. . .
1 −1

 ∈ R(n−1)×n

Penalizes ”edges” in x, tends to produce results piecewise constant (sparse gradient)

� nD, continuous (infinite dimensional): for smooth f ,

min ||
∫
K(s, t)f (t)dt − y(s)||2L2 + λ||∇f ||1

J(f ) = ||∇f ||1 is the total variation of f , and it can be extended to non-smooth images with
discontinuities (edges).
J(f ) corresponds to the total length of its level sets.
Difficult to minimize: ∇J(f ) = div(∇f/||∇f ||) is not well defined everywhere.
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TV Denoising

Noisy 12.2dB TV regularization 21.1dB
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Optimality Conditions for TV Denoising

� The proximal operator for TV : x 7→ ||Dx||1 has no closed-form

x = proxγTV(z) ⇐⇒ z ∈ S>x + γ sign(Dx)

where S =


0
1 0
1 1 0

1 . . . 1 1

 (it is the matrix such that DS = I)]
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Solving the TV Denoising Problem

� Alternating Directions Method of Multipliers considers the augmented Lagrangian

L(x, z, ν) =
1
2
||Ax − y||2 + λ||z||1 + ν>(Dx − z) +

ρ

2
||Dx − z||2

and solves it iteratively minimizing over x (proximal step), z (proximal step) and
maximizing over ν (gradient ascent).

� Majorization-Minimization algorithm compute s at each step a (quadratic) majorant of
TV(x), and minimize it
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