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Our Purpose

� Study the properties of
min

1
2
||Ax − y||2 + J(x)

where J is a convex function.

� Tikhonov has the advantage of having an analytical solution. That is in general not true.

� We need some tools from convex optimization.
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Convexity

� Definition (Convex Set). A set C is convex if

x, y ∈ C =⇒ θx + (1− θ)y ∈ C ∀θ ∈ [0, 1]

Example (Convex hull). The convex hull of a set D, denoted convD, is the set of all linear
combinations of elements of D.

� Definition (Convex function). A function f : Rn → R is convex if

f (θx + (1− θ)y) 6 θf (x) + (1− θ)f (y), ∀θ ∈ [0, 1]

The sublevel sets of a convex function, i.e. {x ; f (x) 6 α}, are convex sets.
Example. || · ||p is convex for p > 1. Quadratic functions

x>Px + q>x + r

are convex.
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Convexity and Differentiability

� Proposition (Tangent). A differentiable f : Rn → R is convex if and only if

f (y) > f (x) + 〈∇f (x), y − x〉, ∀x, y

Proposition (Minimum). x is a (global) minimizer of a differentiable convex function if and
only if ∇f (x) = 0
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Differential Calculus: Manifold

� Definition (Smooth Manifold). Let V ⊂ Rn , a ∈ V and d ∈ N. We say that V is a smooth in
a if there exists a C1-diffeomorphism ϕ from an open neighborhood U ⊂ Rn of a to an
open neighborhood ϕ(U) ⊂ Rn of 0 such that ϕ(V) is a vector space of dimension d.
We say that V is a (smooth) manifold if V is smooth at every point.
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Differential Calculus: Tangent Space

� Definition (Tangent Vector). Let V ⊂ Rn and a ∈ V . A vector v ∈ Rn is tangent to V at a if
there exists a differentiable function γ : I → Rn (where I is an open interval containing 0)
such that

γ(I) ⊂ V, γ(0) = a and γ′(0) = v.

In other words, v is tangent to a path on V going going through a.

� Theorem (Tangent Space). If V is smooth in a, the tangent vectors span a d-dimensional
vector space, called tangent space.
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Constrained Optimization

� Consider the generic optimization problem

min f0(x) s.t. x ∈ V

where V is a smooth manifold. If f0 has a minimum in x∗ on V , then for any differentiable
path γ : [0, 1] → Rn on V with γ(t∗) = x∗ , the first-order optimality criterion gives

(f ◦ γ)′(t∗) = f ′(t∗) · γ′(t∗) = 0.

In other words, ∇f (t∗) is orthogonal to the tangent space of V at t∗ .

6



Optimization Under Equality Constraints

� Let f0, h1, . . . , hm : Rn → R be C1-differentiable

min f0(x) s.t. hi(x) = 0, i = 1, . . . ,m (1)

⇒ admit that hi(x) = 0 ∀i define a smooth manifold, whose tangent space at a is given by

Span(∇h1(a), . . . ,∇hm(a))⊥.

� Therefore, an optimal point for (1) must satisfy
∇f0(x∗) =

m∑
i=1

νi∇hi(x∗) (for some νi ∈ R) (2a)

h1(x∗) = . . . = hm(x∗) = 0 (2b)
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Lagrangian

� We define

L(x, ν) = f0(x) +
∑

νihi(x)

Then
∇xL = 0 ⇔ (2a)
∇νL = 0 ⇔ (2b)

� Definition (Lagrangian).

• L is the Lagrangian associated with problem (1)

• νi are the Lagrange multipliers

• (2a), (2b) are the first order optimality conditions (Karush-Kuhn-Tucker conditions)
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Stationarity Conditons are not Sufficient
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Dual problem

� The minimization/maximization of L (now unconstrained) with respect to x/ν yields
information on the optimum. Consider:

g(ν) = min
x

L(x, ν)

Note that for all feasible x̃, g(ν) 6 L(x̃, ν) = f0(x̃), hence g(ν) 6 f (x∗).
Note also that g is a minimum of affine functions, hence it is concave.

� We consider the following problem

max
ν

g(ν) (3)

In particular, g(ν∗) provides a lower bound on the optimal value of the objective f0(x).

� Definition (Lagrange duality).

- maxν g(ν) is the dual problem

- minx f0(x) s.t. hi(x) = 0 is the primal problem

- f0(x∗)− g(ν∗) is the duality gap

- f0(x∗) > g(ν∗) weak duality

- f0(x∗) = g(ν∗) strong duality, and then maxν minx L(x, ν) = minx maxν L(x, ν)
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Affine Constraints

� In convex optimization, we only deal with affine constraints 〈ai, x〉 = yi . The constraint set
is then an affine space, with tangent space Ker A. The optimality condition (2a) thus states
that ∇f0(x∗) ∈ (Ker A)⊥ = Ran A> .

� Theorem. Assume f0 differentiable, convex, and hi(x) affine. Then KKT conditions are
sufficient, and strong duality holds.

Proof. Assume x∗, ν∗ satisfy the KKT conditions. Since all functions are convex and
differentiable, L(x, ν∗) is convex differentiable in x and condition (2a) states that x∗
minimizes it. Hence,

g(ν∗) = L(x∗, ν∗) = f0(x∗) +
∑

ν∗i hi(x∗) = f0(x∗)

where the last equality holds because x∗ is feasible from (2b). Hence f0 is minimal at x∗
and strong duality holds.
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Examples

� Example. For A ∈ Rm×n and y ∈ Ran A we consider the problem

min
1
2
||x||22 s.t. Ax = y

Then L(x, ν) = 1
2 ||x||

2 + ν>(y − Ax), and the optimality conditions read{
x = A>ν

Ax = y

The dual problem is
max
ν

ν>y −
1
2
||A>ν||2

� Example (Least-squares). For A ∈ Rm×n and y ∈ Rm , consider

min
1
2
||Ax − y||2 +

λ

2
||x||2

then (see exercise)
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Inequality Constraints

� A convex optimization problem is of the form

min f0(x) s.t.
{
fi(x) 6 0 i = 1, . . . , p

a>i x = yi, i = 1, . . . ,m

where f0, f1, . . . , fp : Rn → R are convex.

� The Lagrangian is given by

L(x, µ, ν) = f0(x) +
∑

µifi(x) +
∑

νihi(x)

We have that g(µ, ν) = infx L(x, µ, ν) 6 L(x̃, µ, v) 6 f0(x̃) provided µi > 0.

� The dual problem is

max
µ,ν

g(µ, ν) s.t. µ � 0
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KKT Conditions

� Assume strong duality holds. Then

f0(x∗) = g(µ∗, ν∗) 6 L(x∗, µ∗, ν∗) = f0(x∗) +
∑

(µ∗)ifi(x∗).

Hence 0 6
∑

(µ∗)ifi(x∗), which is only possible if

(µ∗)ifi(x∗) = 0, ∀i.

This is called complementary slackness.

� KKT conditions must hold at optimality when strong duality holds.

• ∇f0(x) +
∑

µi∇fi(x) +
∑

νi∇hi(x) = 0 (stationarity)

• hi(x) = 0 (primal feasability)

• fi(x) 6 0 (primal feasability)

• µi > 0 (dual feasability)

• µifi(x) = 0 (complementary slackness)

� In many practical situations, one does not need to check these conditions

Theorem (Slater’s condition). Let f0, f1, . . . , fp convex and hi affine. If there exists x
such that fi(x) < 0 and Ax = b (strict feasability), then strong duality holds.
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Sensitivity Analysis and Dual

� Perturbed problem
min f0(x) s.t. fi(x) 6 ui, hi(x) = vi

with optimal value p(u, v).
Assume that the problem is feasible for small ui , vi , and that strong duality holds.

� Proposition. Globally, p(u, v) > p(0, 0)− 〈µ∗, u〉 − 〈ν∗, v〉

Proof. We have by strong duality, for any feasible x

p(0, 0) = g(µ∗, ν∗) 6 f0(x) +
∑

µ∗ifi(x) +
∑

ν∗ihi(x) 6 f0(x) + 〈µ∗, u〉+ 〈ν∗, v〉

and hence

p(u, v) > f0(x) > p(0, 0)− 〈µ∗, u〉 − 〈ν∗, v〉. �

� Proposition. Locally, ∂p
∂ui

(0, 0) = −µ∗ and ∂p
∂vi

(0, 0) = −ν∗

Proof. Setting u = tei and v = 0 in the previous inequality, we obtain
p(tei, 0)− p(0, 0)

t
> −µ∗i if t > 0 and

p(tei, 0)− p(0, 0)
t

6 −µ∗i if t < 0.

Taking the limit yields the desired limit. The same reasoning applies for ν . �

� The dual variable gives indication on the sensitivity of the problem
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