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OUR PURPOSE

m Study the properties of
1
min 2 |4 =y + ()
where J is a convex function.
m Tikhonov has the advantage of having an analytical solution. That is in general not true.

m We need some tools from convex optimization.



CONVEXITY

m Definition (Convex Set). A set C is convex if
X,y €C = Ox+(1—-0)yeC Ve[,

Example (Convex hull). The convex hull of a set D, denoted conv D, is the set of all linear
combinations of elements of D.

m Definition (Convex function). A function f : R" — R is convex if
flox+ (1= 0)y) <Of(x) + (1= 0)f(y), VO €[0,1]

The sublevel sets of a convex function, i.e. {x ; f(x) < a}, are convex sets.
Example. | - |p is convex for p > 1. Quadratic functions

XTPx+qTx+ r

are convex.



CONVEXITY AND DIFFERENTIABILITY

m Proposition (Tangent). A differentiable f : R” — R is convex if and only if

f(y)}f(x)-i—(Vf(X),y—X), Vx,y

Proposition (Minimum). x is a (global) minimizer of a differentiable convex function if and
only if Vf(x) =0



DIFFERENTIAL CALCULUS: MANIFOLD

m Definition (Smooth Manifold). Let V C R", a € V and d € N. We say that V is a smooth in
a if there exists a C'-diffeomorphism ¢ from an open neighborhood U c R" of a to an
open neighborhood ¢(U) C R" of 0 such that ¢(V) is a vector space of dimension d.

We say that V is a (smooth) manifold if V is smooth at every point.
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DIFFERENTIAL CALCULUS: TANGENT SPACE

m Definition (Tangent Vector). Let V. C R" and a € V. A vector v € R" is tangent to V at a if
there exists a differentiable function v : | — R" (where [ is an open interval containing 0)
such that

y()cV, ~(0)=a and ~/(0)=v.

In other words, v is tangent to a path on V going going through a.

m Theorem (Tangent Space). If V is smooth in g, the tangent vectors span a d-dimensional
vector space, called tangent space.



CONSTRAINED OPTIMIZATION

m Consider the generic optimization problem
minfo(x) st xeV

where V is a smooth manifold. If fy has a minimum in x. on V, then for any differentiable
path v : [0,1] — R" on V with v(t+) = X«, the first-order optimality criterion gives

(f o) (te) =f'(ts) - 7' (ts) = 0.

In other words, Vf(t«) is orthogonal to the tangent space of V at t..



OPTIMIZATION UNDER EQUALITY CONSTRAINTS

m letfo,hy,...,hm : R" — R be C'-differentiable
minfo(x) st hi(x)=0,i=1...,m (1)
= admit that h;(x) = 0 Vi define a smooth manifold, whose tangent space at a is given by

Span(Vhi(a), ..., Vhm(a))= .



OPTIMIZATION UNDER EQUALITY CONSTRAINTS

m letfo,hy,...,hm : R" — R be C'-differentiable
minfO(X) st h,-(X):O,i:L...,m (1)
= admit that h;(x) = 0 Vi define a smooth manifold, whose tangent space at a is given by

Span(Vhi(a), ..., Vhm(a))= .
m Therefore, an optimal point for (1) must satisfy
m
Vio(xe) = > vVhi(x:) (for some ; € R) (2a)
i=1

h(X«) = ... =hm(xs) =0 (2b)




LAGRANGIAN

m We define
L(x,v) = fo(X) + > vhi(x)

Then
VxL=0 < (2a)
V,.L=0 < (2b)

m Definition (Lagrangian).
« L isthe Lagrangian associated with problem (1)
e v; are the Lagrange multipliers

e (2a), (2b) are the first order optimality conditions (Karush-Kuhn-Tucker conditions)



STATIONARITY CONDITONS ARE NOT SUFFICIENT




DUAL PROBLEM

m The minimization/maximization of £ (now unconstrained) with respect to x/v yields
information on the optimum. Consider:

g(v) = mxin L(x,v)

Note that for all feasible X, g(v) < L(X,v) = fo(X), hence g(v) < f(Xx).
Note also that g is @ minimum of affine functions, hence it is concave.
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m We consider the following problem
max g(v) 3)

In particular, g(v«) provides a lower bound on the optimal value of the objective fo(x).
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Note that for all feasible X, g(v) < L(X,v) = fo(X), hence g(v) < f(Xx).
Note also that g is @ minimum of affine functions, hence it is concave.

m We consider the following problem
max g(v) 3)

In particular, g(v«) provides a lower bound on the optimal value of the objective fo(x).

m Definition (Lagrange duality).
- max, g(v) isthe
- minx fo(x) st hij(x) =0 isthe
- fo(xx) — g(v«) s the
- fo(x«) > g(v)

- fo(xx) = g(vx) , and then max, miny £(x, v) = minx max, L(X,v) .



AFFINE CONSTRAINTS

m In convex optimization, we only deal with affine constraints (a;, x) = y;. The constraint set
is then an affine space, with tangent space Ker A. The optimality condition (2a) thus states
that Vfo(x«) € (KerA)- = RanAT.

m Theorem. Assume f; differentiable, convex, and h;(x) affine. Then KKT conditions are
sufficient, and strong duality holds.

Proof. Assume X., v, satisfy the KKT conditions. Since all functions are convex and
differentiable, £(x, v« ) is convex differentiable in x and condition (2a) states that x.
minimizes it. Hence,

9(re) = L0, 1) = folx) + D v hi(x) = fo(x)

where the last equality holds because x. is feasible from (2b). Hence fy is minimal at x.
and strong duality holds.



EXAMPLES

m Example. For A€ R™*" and y € RanA we consider the problem
I
min 5\|x||2 st. Ax=y

Then £(x,v) = 2|x|?> + v T (y — Ax), and the optimality conditions read
x=ATv
Ax =y

]
maxv |y — —|ATv|?
v 2

The dual problem is

m Example (Least-squares). For A € R™*" and y € R™, consider
1 A
in = |Ax — y|*> + Z|x|?
min [Ax I + J x|

then (see exercise)



INEQUALITY CONSTRAINTS

m A convex optimization problem is of the form

minfo(x) st {E(TXKO F=T.00p

a x=y, Ii=1...,m
where fo,f1,...,fp : R"” — R are convex.

m The Lagrangian is given by
L, p,v) = fo(X) + D pwifi(x) + > wihi(x)

We have that g(u, v) = infx L(X, p, v) < L(X, p, v) < fo(X) provided p; > 0.
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m A convex optimization problem is of the form

minfo(x) st {E(TXKO F=T.00p

a x=y, Ii=1...,m

where fo,f1,...,fp : R"” — R are convex.

m The Lagrangian is given by
L, p,v) = fo(X) + D pwifi(x) + > wihi(x)

We have that g(u, v) = infx L(X, p, v) < L(X, p, v) < fo(X) provided p; > 0.
m The dual problem is

maxg(u,v) st pu=0
v



KKT CONDITIONS

m Assume strong duality holds. Then
foxe) = Ghs ) < L0 pi, 1) = folxe) + 3 ()i ().
Hence 0 < >~ (u+)ifi(X«), which is only possible if
()ifi(x) = 0, Vi,

This is called complementary slackness.



KKT CONDITIONS

m Assume strong duality holds. Then
Folxe) = Ghs vs) < L0y ps i) = folxe) + 3 (1 )ifi(%5)-
Hence 0 < > (u«)ifi(X«), which is only possible if

()ifi(x) = 0, Vi,
This is called

m KKT conditions must hold at optimality when strong duality holds.

o Vio(x) + 3 i Vfi(x) + v Vhi(x) =0 (stationarity)
hi(x) =0 (primal feasability)

fi(x) <0 (primal feasability)

e u; >0 (dual feasability)

wifi(x) =0 (complementary slackness)

m In many practical situations, one does not need to check these conditions

Theorem (Slater’s condition). Let fo,f1,...,fp convex and h; affine. If there exists x
such that f;(x) < 0 and Ax = b (strict feasability), then strong duality holds.



SENSITIVITY ANALYSIS AND DUAL

m Perturbed problem
minfo(x) st fi(x) <u;, hi(x) =y
with optimal value p(u, v).
Assume that the problem is feasible for small uj, v;, and that strong duality holds.

m Proposition. Globally, p(u,v) = p(0,0) — {u«, U) — (v«, V)

Proof. We have by strong duality, for any feasible x

P(0,0) = gk, v+) < folx) + D paifiC0) + D vaii(¥) < fo(X) + (o, U) + (v, V)

and hence

p(U,V);fO(X)>p(O7O)—<M*7 U>—<V*7V>. g
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Proof. Setting u = te; and v = 0 in the previous inequality, we obtain

p(teho)t_p(o’o) > —p,; if t>0 and p(teiuo)t_p(ovo) <= if t<o.

Taking the limit yields the desired limit. The same reasoning applies for v. O
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m Perturbed problem
minfo(x) st fi(x) <u;, hi(x) =y
with optimal value p(u, v).
Assume that the problem is feasible for small uj, v;, and that strong duality holds.
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p(teho)t_p(o’o) > —p,; if t>0 and p(teiuo)t_p(ovo) <= if t<o.

Taking the limit yields the desired limit. The same reasoning applies for v. O

m The dual variable gives indication on the sensitivity of the problem .



