Convex Optimization

Fallstudien der mathematische Modelbildung, Teil 2
20.10.2023-21.11.2023,
paul.catala@tum.de

OUR PURPOSE

- Study the properties of

$$
\min \frac{1}{2}\|A x-y\|^{2}+\jmath(x)
$$

where J is a convex function.

- Tikhonov has the advantage of having an analytical solution. That is in general not true.
- We need some tools from convex optimization.

CONVEXITY

- Definition (Convex Set). A set C is convex if

$$
x, y \in C \Longrightarrow \theta x+(1-\theta) y \in C \quad \forall \theta \in[0,1]
$$

Example (Convex hull). The convex hull of a set D, denoted conv D, is the set of all linear combinations of elements of D.

- Definition (Convex function). A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
f(\theta x+(1-\theta) y) \leqslant \theta f(x)+(1-\theta) f(y), \quad \forall \theta \in[0,1]
$$

The sublevel sets of a convex function, i.e. $\{x ; f(x) \leqslant \alpha\}$, are convex sets.
Example. $\|\cdot\|_{p}$ is convex for $p \geqslant 1$. Quadratic functions

$$
x^{\top} P x+q^{\top} x+r
$$

are convex.

CONVEXITY AND DIFFERENTIABILITY

■ Proposition (Tangent). A differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if

$$
f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle, \quad \forall x, y
$$

Proposition (Minimum). x is a (global) minimizer of a differentiable convex function if and only if $\nabla f(x)=0$

DIFFERENTIAL CALCULUS: MANIFOLD

- Definition (Smooth Manifold). Let $V \subset \mathbb{R}^{n}, a \in V$ and $d \in \mathbb{N}$. We say that V is a smooth in a if there exists a C^{1}-diffeomorphism φ from an open neighborhood $U \subset \mathbb{R}^{n}$ of a to an open neighborhood $\varphi(U) \subset \mathbb{R}^{n}$ of 0 such that $\varphi(V)$ is a vector space of dimension d. We say that V is a (smooth) manifold if V is smooth at every point.

Differential Calculus: Tangent Space

■ Definition (Tangent Vector). Let $V \subset \mathbb{R}^{n}$ and $a \in V$. A vector $v \in \mathbb{R}^{n}$ is tangent to V at a if there exists a differentiable function $\gamma: I \rightarrow \mathbb{R}^{n}$ (where I is an open interval containing 0) such that

$$
\gamma(I) \subset V, \quad \gamma(0)=a \quad \text { and } \quad \gamma^{\prime}(0)=v
$$

In other words, v is tangent to a path on V going going through a.

- Theorem (Tangent Space). If V is smooth in a, the tangent vectors span a d-dimensional vector space, called tangent space.

Constrained Optimization

- Consider the generic optimization problem

$$
\min f_{0}(x) \text { s.t. } x \in V
$$

where V is a smooth manifold. If f_{0} has a minimum in x_{*} on V, then for any differentiable path $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ on V with $\gamma\left(t_{*}\right)=x_{*}$, the first-order optimality criterion gives

$$
(f \circ \gamma)^{\prime}\left(t_{*}\right)=f^{\prime}\left(t_{*}\right) \cdot \gamma^{\prime}\left(t_{*}\right)=0
$$

In other words, $\nabla f\left(t_{*}\right)$ is orthogonal to the tangent space of V at t_{*}.

Optimization Under Equality Constraints

■ Let $f_{0}, h_{1}, \ldots, h_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1}-differentiable

$$
\begin{equation*}
\min f_{0}(x) \quad \text { s.t. } \quad h_{i}(x)=0, i=1, \ldots, m \tag{1}
\end{equation*}
$$

\Rightarrow admit that $h_{i}(x)=0 \forall i$ define a smooth manifold, whose tangent space at a is given by $\operatorname{Span}\left(\nabla h_{1}(a), \ldots, \nabla h_{m}(a)\right)^{\perp}$.

Optimization Under Equality Constraints

■ Let $f_{0}, h_{1}, \ldots, h_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1}-differentiable

$$
\begin{equation*}
\min f_{0}(x) \quad \text { s.t. } \quad h_{i}(x)=0, i=1, \ldots, m \tag{1}
\end{equation*}
$$

\Rightarrow admit that $h_{i}(x)=0 \forall i$ define a smooth manifold, whose tangent space at a is given by

$$
\operatorname{Span}\left(\nabla h_{1}(a), \ldots, \nabla h_{m}(a)\right)^{\perp}
$$

- Therefore, an optimal point for (1) must satisfy

$$
\left\{\begin{array}{l}
\nabla f_{0}\left(x_{*}\right)=\sum_{i=1}^{m} \nu_{i} \nabla h_{i}\left(x_{*}\right) \quad\left(\text { for some } \nu_{i} \in \mathbb{R}\right) \tag{2a}\\
h_{1}\left(x_{*}\right)=\ldots=h_{m}\left(x_{*}\right)=0
\end{array}\right.
$$

LAGRANGIAN

- We define

$$
\mathcal{L}(x, \nu)=f_{0}(x)+\sum \nu_{i} h_{i}(x)
$$

Then

$$
\begin{array}{rll}
\nabla_{\times} \mathcal{L}=0 & \Leftrightarrow & (2 \mathrm{a}) \\
\nabla_{\nu} \mathcal{L}=0 & \Leftrightarrow & (2 \mathrm{~b})
\end{array}
$$

- Definition (Lagrangian).
- \mathcal{L} is the Lagrangian associated with problem (1)
- ν_{i} are the Lagrange multipliers
- (2a), (2b) are the first order optimality conditions (Karush-Kuhn-Tucker conditions)

Stationarity Conditions are not Sufficient

DUAL PROBLEM

- The minimization/maximization of \mathcal{L} (now unconstrained) with respect to x / ν yields information on the optimum. Consider:

$$
g(\nu)=\min _{x} \mathcal{L}(x, \nu)
$$

Note that for all feasible $\tilde{x}, g(\nu) \leqslant \mathcal{L}(\tilde{x}, \nu)=f_{0}(\tilde{x})$, hence $g(\nu) \leqslant f\left(x_{*}\right)$. Note also that g is a minimum of affine functions, hence it is concave.

DUAL PROBLEM

- The minimization/maximization of \mathcal{L} (now unconstrained) with respect to x / ν yields information on the optimum. Consider:

$$
g(\nu)=\min _{x} \mathcal{L}(x, \nu)
$$

Note that for all feasible $\tilde{x}, g(\nu) \leqslant \mathcal{L}(\tilde{x}, \nu)=f_{0}(\tilde{x})$, hence $g(\nu) \leqslant f\left(x_{*}\right)$.
Note also that g is a minimum of affine functions, hence it is concave.

- We consider the following problem

$$
\begin{equation*}
\max _{\nu} g(\nu) \tag{3}
\end{equation*}
$$

In particular, $g\left(\nu_{*}\right)$ provides a lower bound on the optimal value of the objective $f_{0}(x)$.

DUAL PROBLEM

- The minimization/maximization of \mathcal{L} (now unconstrained) with respect to x / ν yields information on the optimum. Consider:

$$
g(\nu)=\min _{x} \mathcal{L}(x, \nu)
$$

Note that for all feasible $\tilde{x}, g(\nu) \leqslant \mathcal{L}(\tilde{x}, \nu)=f_{0}(\tilde{x})$, hence $g(\nu) \leqslant f\left(x_{*}\right)$.
Note also that g is a minimum of affine functions, hence it is concave.

- We consider the following problem

$$
\begin{equation*}
\max _{\nu} g(\nu) \tag{3}
\end{equation*}
$$

In particular, $g\left(\nu_{*}\right)$ provides a lower bound on the optimal value of the objective $f_{0}(x)$.

- Definition (Lagrange duality).
- $\max _{\nu} g(\nu)$ is the dual problem
- $\min _{x} f_{0}(x)$ s.t. $\quad h_{i}(x)=0$ is the primal problem
- $f_{0}\left(x_{*}\right)-g\left(\nu_{*}\right)$ is the duality gap
- $f_{0}\left(x_{*}\right)>g\left(\nu_{*}\right)$ weak duality
- $f_{0}\left(x_{*}\right)=g\left(\nu_{*}\right)$ strong duality, and then $\max _{\nu} \min _{x} \mathcal{L}(x, \nu)=\min _{x} \max _{\nu} \mathcal{L}(x, \nu)$

Affine Constraints

- In convex optimization, we only deal with affine constraints $\left\langle a_{i}, x\right\rangle=y_{i}$. The constraint set is then an affine space, with tangent space $\operatorname{Ker} A$. The optimality condition (2a) thus states that $\nabla f_{0}\left(x_{*}\right) \in(\operatorname{Ker} A)^{\perp}=\operatorname{Ran} A^{\top}$.
- Theorem. Assume f_{0} differentiable, convex, and $h_{i}(x)$ affine. Then KKT conditions are sufficient, and strong duality holds.

Proof. Assume x_{*}, ν_{*} satisfy the KKT conditions. Since all functions are convex and differentiable, $\mathcal{L}\left(x, \nu_{*}\right)$ is convex differentiable in x and condition (2a) states that x_{*} minimizes it. Hence,

$$
g\left(\nu_{*}\right)=\mathcal{L}\left(x_{*}, \nu_{*}\right)=f_{0}\left(x_{*}\right)+\sum \nu_{i}^{*} h_{i}\left(x_{*}\right)=f_{0}\left(x_{*}\right)
$$

where the last equality holds because x_{*} is feasible from (2b). Hence f_{0} is minimal at x_{*} and strong duality holds.

EXAMPLES

- Example. For $A \in \mathbb{R}^{m \times n}$ and $y \in \operatorname{Ran} A$ we consider the problem

$$
\min \frac{1}{2}\|x\|_{2}^{2} \quad \text { s.t. } \quad A x=y
$$

Then $\mathcal{L}(x, \nu)=\frac{1}{2}\|x\|^{2}+\nu^{\top}(y-A x)$, and the optimality conditions read

$$
\left\{\begin{array}{l}
x=A^{\top} \nu \\
A x=y
\end{array}\right.
$$

The dual problem is

$$
\max _{\nu} \nu^{\top} y-\frac{1}{2}\left\|A^{\top} \nu\right\|^{2}
$$

- Example (Least-squares). For $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^{m}$, consider

$$
\min \frac{1}{2}\|A x-y\|^{2}+\frac{\lambda}{2}\|x\|^{2}
$$

then (see exercise)

InEQUALITY CONSTRAINTS

- A convex optimization problem is of the form

$$
\min f_{0}(x) \quad \text { s.t. } \quad\left\{\begin{array}{l}
f_{i}(x) \leqslant 0 \quad i=1, \ldots, p \\
a_{i}^{\top} x=y_{i}, \quad i=1, \ldots, m
\end{array}\right.
$$

where $f_{0}, f_{1}, \ldots, f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex.

- The Lagrangian is given by

$$
\mathcal{L}(x, \mu, \nu)=f_{0}(x)+\sum \mu_{i} f_{i}(x)+\sum \nu_{i} h_{i}(x)
$$

We have that $g(\mu, \nu)=\inf _{x} \mathcal{L}(x, \mu, \nu) \leqslant \mathcal{L}(\tilde{x}, \mu, v) \leqslant f_{0}(\tilde{x})$ provided $\mu_{i} \geqslant 0$.

InEQUALITY CONSTRAINTS

- A convex optimization problem is of the form

$$
\min f_{0}(x) \quad \text { s.t. } \quad\left\{\begin{array}{l}
f_{i}(x) \leqslant 0 \quad i=1, \ldots, p \\
a_{i}^{\top} x=y_{i}, \quad i=1, \ldots, m
\end{array}\right.
$$

where $f_{0}, f_{1}, \ldots, f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex.

- The Lagrangian is given by

$$
\mathcal{L}(x, \mu, \nu)=f_{0}(x)+\sum \mu_{i} f_{i}(x)+\sum \nu_{i} h_{i}(x)
$$

We have that $g(\mu, \nu)=\inf _{x} \mathcal{L}(x, \mu, \nu) \leqslant \mathcal{L}(\tilde{x}, \mu, v) \leqslant f_{0}(\tilde{x})$ provided $\mu_{i} \geqslant 0$.

- The dual problem is

$$
\max _{\mu, \nu} g(\mu, \nu) \quad \text { s.t. } \quad \mu \succeq 0
$$

KKT Conditions

- Assume strong duality holds. Then

$$
f_{0}\left(x_{*}\right)=g\left(\mu_{*}, \nu_{*}\right) \leqslant \mathcal{L}\left(x_{*}, \mu_{*}, \nu_{*}\right)=f_{0}\left(x_{*}\right)+\sum\left(\mu_{*}\right)_{i} f_{i}\left(x_{*}\right) .
$$

Hence $0 \leqslant \sum\left(\mu_{*}\right)_{i} f_{i}\left(x_{*}\right)$, which is only possible if

$$
\left(\mu_{*}\right)_{i} f_{i}\left(x_{*}\right)=0, \quad \forall i
$$

This is called complementary slackness.

KKT Conditions

- Assume strong duality holds. Then

$$
f_{0}\left(x_{*}\right)=g\left(\mu_{*}, \nu_{*}\right) \leqslant \mathcal{L}\left(x_{*}, \mu_{*}, \nu_{*}\right)=f_{0}\left(x_{*}\right)+\sum\left(\mu_{*}\right)_{i} f_{i}\left(x_{*}\right) .
$$

Hence $0 \leqslant \sum\left(\mu_{*}\right)_{i} f_{i}\left(x_{*}\right)$, which is only possible if

$$
\left(\mu_{*}\right)_{i} f_{i}\left(x_{*}\right)=0, \quad \forall i
$$

This is called complementary slackness.

- KKT conditions must hold at optimality when strong duality holds.
- $\nabla f_{0}(x)+\sum \mu_{i} \nabla f_{i}(x)+\sum \nu_{i} \nabla h_{i}(x)=0 \quad$ (stationarity)
- $h_{i}(x)=0 \quad$ (primal feasability)
- $f_{i}(x) \leqslant 0 \quad$ (primal feasability)
- $\mu_{i} \geqslant 0 \quad$ (dual feasability)
- $\mu_{i} f_{i}(x)=0 \quad$ (complementary slackness)
- In many practical situations, one does not need to check these conditions

Theorem (Slater's condition). Let $f_{0}, f_{1}, \ldots, f_{p}$ convex and h_{i} affine. If there exists x such that $f_{i}(x)<0$ and $A x=b$ (strict feasability), then strong duality holds.

Sensitivity Analysis and Dual

- Perturbed problem

$$
\min f_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leqslant u_{i}, \quad h_{i}(x)=v_{i}
$$

with optimal value $p(u, v)$.
Assume that the problem is feasible for small u_{i}, v_{i}, and that strong duality holds.

- Proposition. Globally, $p(u, v) \geqslant p(0,0)-\left\langle\mu_{*}, u\right\rangle-\left\langle\nu_{*}, v\right\rangle$

Proof. We have by strong duality, for any feasible x

$$
p(0,0)=g\left(\mu_{*}, \nu_{*}\right) \leqslant f_{0}(x)+\sum \mu_{* i} f_{i}(x)+\sum \nu_{* i} h_{i}(x) \leqslant f_{0}(x)+\left\langle\mu_{*}, u\right\rangle+\left\langle\nu_{*}, v\right\rangle
$$

and hence

$$
p(u, v) \geqslant f_{0}(x) \geqslant p(0,0)-\left\langle\mu_{*}, u\right\rangle-\left\langle\nu_{*}, v\right\rangle .
$$

Sensitivity Analysis and Dual

- Perturbed problem

$$
\min f_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leqslant u_{i}, \quad h_{i}(x)=v_{i}
$$

with optimal value $p(u, v)$.
Assume that the problem is feasible for small u_{i}, v_{i}, and that strong duality holds.

- Proposition. Globally, $p(u, v) \geqslant p(0,0)-\left\langle\mu_{*}, u\right\rangle-\left\langle\nu_{*}, v\right\rangle$

Proof. We have by strong duality, for any feasible x

$$
p(0,0)=g\left(\mu_{*}, \nu_{*}\right) \leqslant f_{0}(x)+\sum \mu_{* i} f_{i}(x)+\sum \nu_{* i} h_{i}(x) \leqslant f_{0}(x)+\left\langle\mu_{*}, u\right\rangle+\left\langle\nu_{*}, v\right\rangle
$$

and hence

$$
p(u, v) \geqslant f_{0}(x) \geqslant p(0,0)-\left\langle\mu_{*}, u\right\rangle-\left\langle\nu_{*}, v\right\rangle .
$$

- Proposition. Locally, $\frac{\partial p}{\partial u_{i}}(0,0)=-\mu_{*} \quad$ and $\quad \frac{\partial p}{\partial v_{i}}(0,0)=-\nu_{*}$

Proof. Setting $u=t e_{i}$ and $v=0$ in the previous inequality, we obtain

$$
\frac{p\left(t e_{i}, 0\right)-p(0,0)}{t} \geqslant-\mu_{* i} \text { if } t>0 \quad \text { and } \quad \frac{p\left(t e_{i}, 0\right)-p(0,0)}{t} \leqslant-\mu_{* i} \text { if } t<0
$$

Taking the limit yields the desired limit. The same reasoning applies for ν.

Sensitivity Analysis and Dual

- Perturbed problem

$$
\min f_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leqslant u_{i}, \quad h_{i}(x)=v_{i}
$$

with optimal value $p(u, v)$.
Assume that the problem is feasible for small u_{i}, v_{i}, and that strong duality holds.

- Proposition. Globally, $p(u, v) \geqslant p(0,0)-\left\langle\mu_{*}, u\right\rangle-\left\langle\nu_{*}, v\right\rangle$

Proof. We have by strong duality, for any feasible x

$$
p(0,0)=g\left(\mu_{*}, \nu_{*}\right) \leqslant f_{0}(x)+\sum \mu_{* i} f_{i}(x)+\sum \nu_{* i} h_{i}(x) \leqslant f_{0}(x)+\left\langle\mu_{*}, u\right\rangle+\left\langle\nu_{*}, v\right\rangle
$$

and hence

$$
p(u, v) \geqslant f_{0}(x) \geqslant p(0,0)-\left\langle\mu_{*}, u\right\rangle-\left\langle\nu_{*}, v\right\rangle .
$$

- Proposition. Locally, $\frac{\partial p}{\partial u_{i}}(0,0)=-\mu_{*} \quad$ and $\quad \frac{\partial p}{\partial v_{i}}(0,0)=-\nu_{*}$

Proof. Setting $u=t e_{i}$ and $v=0$ in the previous inequality, we obtain

$$
\frac{p\left(t e_{i}, 0\right)-p(0,0)}{t} \geqslant-\mu_{* i} \text { if } t>0 \quad \text { and } \quad \frac{p\left(t e_{i}, 0\right)-p(0,0)}{t} \leqslant-\mu_{* i} \text { if } t<0
$$

Taking the limit yields the desired limit. The same reasoning applies for ν.

- The dual variable gives indication on the sensitivity of the problem

