Mathematical methods for inverse problems: Least-squares, conditioning and Singular Value Decomposition

Fallstudien der mathematische Modelbildung, Teil 2 20.10.2023 - 21.11.2023, paul.catala@tum.de

$$Ax = y \tag{P}$$

where $x \in E(\mathbb{R}^n)$, $y \in F(\mathbb{R}^m)$ and $A \in \mathcal{L}(E, F)(\mathbb{R}^{m \times n})$.

■ The linear mapping A

$$Ax = y \tag{P}$$

where $x \in E(\mathbb{R}^n)$, $y \in F(\mathbb{R}^m)$ and $A \in \mathcal{L}(E, F)(\mathbb{R}^{m \times n})$. The linear mapping A1) might not be surjective

$$Ax = y \tag{P}$$

where $x \in E(\mathbb{R}^n)$, $y \in F(\mathbb{R}^m)$ and $A \in \mathcal{L}(E, F)(\mathbb{R}^{m \times n})$. The linear mapping A1) might not be surjective

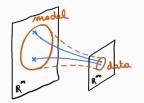
2) might not be injective

$$Ax = y \tag{P}$$

where $x \in E(\mathbb{R}^n)$, $y \in F(\mathbb{R}^m)$ and $A \in \mathcal{L}(E, F)(\mathbb{R}^{m \times n})$. The linear mapping A 1) might not be surjective

2) might not be injective

3) might be close to singular, *i.e.* A^{-1} (if it exists) might be "almost" discontinuous.



$$Ax = y \tag{P}$$

where $x \in E(\mathbb{R}^n)$, $y \in F(\mathbb{R}^m)$ and $A \in \mathcal{L}(E, F)(\mathbb{R}^{m \times n})$. The linear mapping A 1) might not be surjective $f_{am} = f_{am} = f_{am}$ \rightarrow easily rectifiable through weaker reformulation

2) might not be injective

3) might be close to singular, *i.e.* A^{-1} (if it exists) might be "almost" discontinuous.

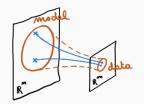
$$Ax = y \tag{P}$$

where x ∈ E (ℝⁿ), y ∈ F (ℝ^m) and A ∈ L(E, F) (ℝ^{m×n}).
The linear mapping A
1) might not be surjective house heaving h

2) might not be injective

 \rightarrow needs prior information (structural properties s.a. sparsity, low-rank, etc...)

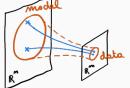
3) might be close to singular, *i.e.* A^{-1} (if it exists) might be "almost" discontinuous.



$$Ax = y \tag{P}$$

where $x \in E(\mathbb{R}^n)$, $y \in F(\mathbb{R}^m)$ and $A \in \mathcal{L}(E, F)(\mathbb{R}^{m \times n})$. The linear mapping A 1) might not be surjective $\mathcal{R}_m \neq \mathcal{R}_m \neq \mathcal{R}_m$ \rightarrow easily rectifiable through weaker reformulation

- 2) might not be injective
 - \longrightarrow needs prior information (structural properties s.a. sparsity, low-rank, etc...)
- 3) might be close to singular, *i.e.* A^{-1} (if it exists) might be "almost" discontinuous. \rightarrow numerical instabilities: although A^{-1} is continuous (finite dimension), might be ill-conditoned



- $y \in \operatorname{Ran} A$ too restrictive in practice:
 - over-determined systems (m > n) in approximation
 - noise in data
 - model mismatches...
- Least-squares formulation

$$\min_{\substack{x \in E}} \|y - Ax\|_2^2 \tag{LS}$$

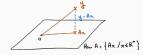
Example (Regression).

$$\min_{\mathbf{x}\in E} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \tag{LS}$$

(LS) is equivalent to a linear system, for a different map than A
 Proposition (Normal equations). x is a solution of (LS) if and only if

$$A^{\top}Ax = A^{\top}y, \tag{N}$$

or equivalently $A^{\top}(y - Ax) = 0$.



Memo (Adjoint). Ran $A^{\top} = (\text{Ker } A)^{\perp}$ Ker $A^{\top} = (\text{Ran } A)^{\perp}$ Proof.

Let x be a solution of (N). Hence $y - Ax \in (\operatorname{Ran} A)^{\perp}$. Let $z \in E$. Then

$$||y - Az||_2^2 = ||y - Ax||_2^2 + ||A(x - z)||_2^2 \ge ||y - Ax||_2^2$$

Reciprocally, assume that x is not a solution of (N), that is $w := A^{\top}(Ax - y) \neq 0$. Let $z = x + \varepsilon w$ for $\varepsilon > 0$. Then

$$\|y - Az\|_{2}^{2} = \|y - Ax\|_{2}^{2} - 2\varepsilon \|w\|_{2}^{2} + \varepsilon^{2} \|Aw\|_{2}^{2} < \|y - Ax\|_{2}^{2}$$

for small ε , hence x is not a solution of (LS).

 $\min_{x\in E}\|y-Ax\|_2^2$

■ *Proposition (Existence).* (LS) always admits at least one solution (in finite dimension).

Memo (Ranges, kernels).Proof.
We have that $A^{\top} \in \operatorname{Ran} A^{\top}$, henceRan $A^{\top} = (\operatorname{Ker} A)^{\perp}$ $A^{\top} y \in (\operatorname{Ker} A)^{\perp} = (\operatorname{Ker}(A^{\top} A))^{\perp} = \operatorname{Ran}(A^{\top} A)$ Ker $A^{\top} A = \operatorname{Ker} A$ hence (N), and therefore (LS), always has a solution.

Proposition (Unicity). The solution is unique if and only if A is injective.

Proof. (LS) has a unique solution \iff (N) has a unique solution \iff Ker $A^{\top}A = \{0\} \iff$ Ker $A = \{0\} \iff$ A is injective. (LS)

STABILITY?

Example (A toy example).

• Consider Ax = y where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 + \frac{1}{n} \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$A^{-1} = n \begin{bmatrix} 1 + \frac{1}{n} & -1 \\ -1 & 1 \end{bmatrix}, \quad \text{and} \quad x = A^{-1}y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Then

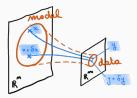
Now, assume we have a small additive noise in our measurement vector, *e.g.* $\tilde{y} = \begin{bmatrix} 1 \\ 1 + \varepsilon \end{bmatrix}$. Then

$$\tilde{\mathbf{x}} = \mathbf{A}^{-1}\tilde{\mathbf{y}} = \begin{bmatrix} 1 - n\varepsilon \\ n\varepsilon \end{bmatrix}$$

A small perturbation in the data may cause arbitrarily large variations in the solution $(n \gg \varepsilon)$.

- Assume for now that A is invertible. Hence (P) and (LS) have a unique solution $x = A^{-1}y$.
- Stability: let Ax = y be perturbed in $A(x + \delta x) = y + \delta y$. We want to compare

$$\frac{\|\delta y\|_2}{\|y\|_2} \text{ and } \frac{\|\delta x\|_2}{\|x\|_2}$$



OPERATOR NORM

We have

$$\begin{cases} \delta x = A^{-1} \delta x \\ y = A x \end{cases} \implies \begin{cases} \|\delta x\|_2 \le \|A^{-1}\|_{2,2} \|\delta x\|_2 \\ \|y\|_2 \le \|A\|_{2,2} \|x\|_2 \end{cases}$$

where $||A||_{2,2}$ is the operator norm of A

Definition (Operator norm). The operator norm of a linear operator $A \in \mathcal{L}(E, F)$ is

$$\|A\|_{E,F} := \sup_{x \neq 0} \frac{\|Ax\|_F}{\|x\|_E} = \sup_{\|x\|_E = 1} \|Ax\|_F = \sup_{\|x\|_E \le 1} \|Ax\|_F$$

In our case, working with the ℓ^2 -norm, we write $||A||_{2,2}$, or simply ||A||.

OPERATOR NORM

We have

$$\begin{cases} \delta x = A^{-1} \delta x \\ y = A x \end{cases} \implies \begin{cases} \|\delta x\|_2 \le \|A^{-1}\|_{2,2} \|\delta x\|_2 \\ \|y\|_2 \le \|A\|_{2,2} \|x\|_2 \end{cases}$$

where $||A||_{2,2}$ is the operator norm of A

Definition (Operator norm). The operator norm of a linear operator $A \in \mathcal{L}(E, F)$ is

$$\|A\|_{E,F} := \sup_{x \neq 0} \frac{\|Ax\|_F}{\|x\|_E} = \sup_{\|x\|_E = 1} \|Ax\|_F = \sup_{\|x\|_E \le 1} \|Ax\|_F$$

In our case, working with the ℓ^2 -norm, we write $||A||_{2,2}$, or simply ||A||.

Proof.

(of the two last equalities)

Let $S = \{x ; ||x|| = 1\}$. The mapping $E \setminus \{0\} \to S, x \mapsto x/||x||$ is surjective, hence $||A|| = \sup_{x \neq 0} ||A(x/||x||)|| = \sup_{x \in S} ||Ax||$.

Let $B = \{x ; ||x|| \leq 1\}$. Since $S \subset B$, necessarily $\sup_{x \in S} ||Ax|| \leq \sup_{x \in B} ||Ax||$. On the other hand, we have by definition that for any $x \in B$,

$$\|Ax\| \leqslant \|A\| \|x\| \leqslant \|A\|$$

and hence $\sup_{x \in B} ||Ax|| \leq ||A||$. Altogether, we reach the desired equalities.

Rearranging

we obtain

$$\begin{cases} \|\delta x\| \leq \|A^{-1}\| \|\delta y\| \\ \|y\| \leq \|A\| \|x\| \\ \frac{\|\delta x\|}{\|x\|} = \|A^{-1}\| \|A\| \frac{\|\delta y\|_2}{\|y\|_2} \end{cases}$$

Definition (Condition number). The condition number of an invertible matrix A is

 $\kappa(A) := \|A\| \|A^{-1}\|$

Rearranging

we obtain

$$\begin{cases} \|\delta x\| \leq \|A^{-1}\| \|\delta y\| \\ \|y\| \leq \|A\| \|x\| \\ \\ \frac{\|\delta x\|}{\|x\|} = \|A^{-1}\| \|A\| \frac{\|\delta y\|_2}{\|y\|_2} \end{cases}$$

Definition (Condition number). The condition number of an invertible matrix A is

 $\kappa(A) := \|A\| \|A^{-1}\|$

Note that in general $\kappa(A)$ depends on the norms on *E* and *F*. We only consider the ℓ^2 -norm, in which case $\kappa(A)$ can actually be given explicitely as we will see.

Rearranging

 $\begin{cases} \|\delta x\| \le \|A^{-1}\| \|\delta y\| \\ \|y\| \le \|A\| \|x\| \\ \\ \frac{\|\delta x\|}{\|x\|} = \|A^{-1}\| \|A\| \frac{\|\delta y\|_2}{\|y\|_2} \end{cases}$

we obtain

Definition (Condition number). The condition number of an invertible matrix A is

 $\kappa(A) := \|A\| \|A^{-1}\|$

Note that in general $\kappa(A)$ depends on the norms on *E* and *F*. We only consider the ℓ^2 -norm, in which case $\kappa(A)$ can actually be given explicitely as we will see.

Proposition (Some properties). For $A \in \mathbb{R}^{n \times n}$ invertible

- 1. $\kappa(A) \ge 1$
- 2. $\kappa(A) = \kappa(A^{-1})$
- 3. $\kappa(\lambda A) = \kappa(A)$ for any $\lambda \in \mathbb{R} \setminus \{0\}$

Proof.

For all A, B, for all x, $||ABx|| \leq ||A|| ||Bx|| \leq ||A|| ||B|| ||x||$, hence $||AB|| \leq ||A|| ||B||$. In particular, $1 = ||I_n|| \leq ||A|| ||A^{-1}|| = \kappa(A)$.

- The singular value decomposition of A will help us solve the least-squares problem.
- Theorem (Singular Value Decomposition). Let $A \in \mathbb{R}^{m \times n}$ of rank r. There exist $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ orthogonal (*i.e.* $U^{\top}U = UU^{\top} = I_m$ and $V^{\top}V = VV^{\top} = I_n$) and $\Sigma \in \mathbb{R}^{m \times n}$ such that

$$A = U \Sigma V^{\top}$$
 and $\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}$

where $\Sigma_1 = \text{diag}(\sigma_1, \ldots, \sigma_r)$, and $\sigma_1 \ge \ldots \ge \sigma_r > 0$.

Component by component, we have

1)
$$Av_i = \sigma_i u_i$$
, $A^{\top} u_i = \sigma_i v_i$ for $i = 1, ..., r$
2) $Av_i = 0$, $A^{\top} u_i = 0$ for $i \ge r+1$

The u_i and v_i are the left and right singular vectors of A respectively, associated with the singular value σ_i .