Mathematical methods for inverse problems: Least-squares, conditioning and Singular Value Decomposition

Fallstudien der mathematische Modelbildung, Teil 2
20.10.2023-21.11.2023,
paul.catala@tum.de

Linear Systems

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right)$, $y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.

- The linear mapping A

Linear Systems

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right)$, $y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.

- The linear mapping A

1) might not be surjective $\operatorname{Pan} A$

Linear Systems

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right)$, $y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.

- The linear mapping A

1) might not be surjective $-\operatorname{Ran} A$
2) might not be injective

Linear Systems

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right), y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.
■ The linear mapping A

1) might not be surjective

2) might not be injective
3) might be close to singular, i.e. A^{-1} (if it exists) might be "almost" discontinuous.

LINEAR SYSTEMS

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right)$, $y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.

- The linear mapping A

\longrightarrow easily rectifiable through ${ }^{\circ}$ weaker reformulation

2) might not be injective
3) might be close to singular, i.e. A^{-1} (if it exists) might be "almost" discontinuous.

Linear Systems

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right)$, $y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.

- The linear mapping A

\longrightarrow easily rectifiable through ${ }^{\text {We }}$ eaker reformulation

2) might not be injective \longrightarrow needs prior information (structural properties s.a. sparsity, low-rank, etc...)
3) might be close to singular, i.e. A^{-1} (if it exists) might be "almost" discontinuous.

Linear Systems

- We want to solve

$$
\begin{equation*}
A x=y \tag{P}
\end{equation*}
$$

where $x \in E\left(\mathbb{R}^{n}\right)$, $y \in F\left(\mathbb{R}^{m}\right)$ and $A \in \mathcal{L}(E, F)\left(\mathbb{R}^{m \times n}\right)$.

- The linear mapping A

\longrightarrow easily rectifiable through ${ }^{\text {W }}$ weaker reformulation

2) might not be injective \longrightarrow needs prior information (structural properties s.a. sparsity, low-rank, etc...)
3) might be close to singular, i.e. A^{-1} (if it exists) might be "almost" discontinuous. \longrightarrow numerical instabilities: although A^{-1} is continuous (finite dimension), might be ill-conditoned

LEAST-SQUARES

- $y \in \operatorname{Ran} A$ too restrictive in practice:
- over-determined systems ($m>n$) in approximation
- noise in data
- model mismatches...

■ Least-squares formulation

$$
\begin{equation*}
\min _{x \in E}\|y-A x\|_{2}^{2} \tag{LS}
\end{equation*}
$$

Example (Regression).

NORMAL EQUATIONS

$$
\begin{equation*}
\min _{x \in E}\|y-A x\|_{2}^{2} \tag{LS}
\end{equation*}
$$

- (LS) is equivalent to a linear system, for a different map than A

Proposition (Normal equations). x is a solution of (LS) if and only if

$$
\begin{equation*}
A^{\top} A x=A^{\top} y, \tag{N}
\end{equation*}
$$

or equivalently $A^{\top}(y-A x)=0$.

Proof.
Let x be a solution of (N). Hence $y-A x \in(\operatorname{Ran} A)^{\perp}$. Let $z \in E$. Then

$$
\|y-A z\|_{2}^{2}=\|y-A x\|_{2}^{2}+\|A(x-z)\|_{2}^{2} \geqslant\|y-A x\|_{2}^{2}
$$

Memo (Adjoint).

$$
\begin{aligned}
& \operatorname{Ran} A^{\top}=(\operatorname{Ker} A)^{\perp} \\
& \operatorname{Ker} A^{\top}=(\operatorname{Ran} A)^{\perp}
\end{aligned}
$$

Reciprocally, assume that x is not a solution of (N), that is $w:=A^{\top}(A x-y) \neq 0$. Let $z=x+\varepsilon w$ for $\varepsilon>0$. Then

$$
\|y-A z\|_{2}^{2}=\|y-A x\|_{2}^{2}-2 \varepsilon\|w\|_{2}^{2}+\varepsilon^{2}\|A w\|_{2}^{2}<\|y-A x\|_{2}^{2}
$$

for small ε, hence x is not a solution of (LS).

EXISTENCE, UNICITY

$$
\begin{equation*}
\min _{x \in E}\|y-A x\|_{2}^{2} \tag{LS}
\end{equation*}
$$

- Proposition (Existence). (LS) always admits at least one solution (in finite dimension).

$$
\begin{aligned}
& \text { Memo (Ranges, kernels). } \\
& \qquad \begin{array}{l}
\operatorname{Ran} A^{\top}=(\operatorname{Ker} A)^{\perp} \\
\operatorname{Ker} A^{\top}=(\operatorname{Ran} A)^{\perp} \\
\operatorname{Ker} A^{\top} A=\operatorname{Ker} A
\end{array}
\end{aligned}
$$

Proof.
We have that $A^{\top} \in \operatorname{Ran} A^{\top}$, hence

$$
A^{\top} y \in(\operatorname{Ker} A)^{\perp}=\left(\operatorname{Ker}\left(A^{\top} A\right)\right)^{\perp}=\operatorname{Ran}\left(A^{\top} A\right)
$$

hence (N), and therefore (LS), always has a solution.

■ Proposition (Unicity). The solution is unique if and only if A is injective.

Proof.
(LS) has a unique solution $\Longleftrightarrow(N)$ has a unique solution \Longleftrightarrow $\operatorname{Ker} A^{\top} A=\{0\} \Longleftrightarrow \operatorname{Ker} A=\{0\} \Longleftrightarrow A$ is injective.

STABILITY?

Example (A toy example).

- Consider $A x=y$ where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1+\frac{1}{n}
\end{array}\right], \quad y=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Then

$$
A^{-1}=n\left[\begin{array}{cc}
1+\frac{1}{n} & -1 \\
-1 & 1
\end{array}\right], \quad \text { and } \quad x=A^{-1} y=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Now, assume we have a small additive noise in our measurement vector, e.g. $\tilde{y}=\left[\begin{array}{c}1 \\ 1+\varepsilon\end{array}\right]$. Then

$$
\tilde{x}=A^{-1} \tilde{y}=\left[\begin{array}{c}
1-n \varepsilon \\
n \varepsilon
\end{array}\right]
$$

- A small perturbation in the data may cause arbitrarily large variations in the solution $(n \gg \varepsilon)$.

Stability

- Assume for now that A is invertible. Hence (P) and (LS) have a unique solution $x=A^{-1} y$.
- Stability: let $A x=y$ be perturbed in $A(x+\delta x)=y+\delta y$. We want to compare

$$
\frac{\|\delta y\|_{2}}{\|y\|_{2}} \text { and } \frac{\|\delta x\|_{2}}{\|x\|_{2}}
$$

OPERATOR NORM

- We have

$$
\left\{\begin{array} { l }
{ \delta x = A ^ { - 1 } \delta x } \\
{ y = A x }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\|\delta x\|_{2} \leqslant\left\|A^{-1}\right\|_{2,2}\|\delta x\|_{2} \\
\|y\|_{2} \leqslant\|A\|_{2,2}\|x\|_{2}
\end{array}\right.\right.
$$

where $\|A\|_{2,2}$ is the operator norm of A

- Definition (Operator norm). The operator norm of a linear operator $A \in \mathcal{L}(E, F)$ is

$$
\|A\|_{E, F}:=\sup _{x \neq 0} \frac{\|A x\|_{F}}{\|x\|_{E}}=\sup _{\|x\|_{E}=1}\|A x\|_{F}=\sup _{\|x\|_{E} \leqslant 1}\|A x\|_{F}
$$

In our case, working with the ℓ^{2}-norm, we write $\|A\|_{2,2}$, or simply $\|A\|$.

OPERATOR NORM

- We have

$$
\left\{\begin{array} { l }
{ \delta x = A ^ { - 1 } \delta x } \\
{ y = A x }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\|\delta x\|_{2} \leqslant\left\|A^{-1}\right\|_{2,2}\|\delta x\|_{2} \\
\|y\|_{2} \leqslant\|A\|_{2,2}\|x\|_{2}
\end{array}\right.\right.
$$

where $\|A\|_{2,2}$ is the operator norm of A

- Definition (Operator norm). The operator norm of a linear operator $A \in \mathcal{L}(E, F)$ is

$$
\|A\|_{E, F}:=\sup _{x \neq 0} \frac{\|A x\|_{F}}{\|x\|_{E}}=\sup _{\|x\|_{E}=1}\|A x\|_{F}=\sup _{\|x\|_{E} \leqslant 1}\|A x\|_{F}
$$

In our case, working with the ℓ^{2}-norm, we write $\|A\|_{2,2}$, or simply $\|A\|$.

Proof.
(of the two last equalities)
Let $S=\{x ;\|x\|=1\}$. The mapping $E \backslash\{0\} \rightarrow S, x \mapsto x /\|x\|$ is surjective, hence $\|A\|=\sup _{x \neq 0}\|A(x /\|x\|)\|=\sup _{x \in S}\|A x\|$.
Let $B=\{x ;\|x\| \leqslant 1\}$. Since $S \subset B$, necessarily $\sup _{x \in S}\|A x\| \leqslant \sup _{x \in B}\|A x\|$. On the other hand, we have by definition that for any $x \in B$,

$$
\|A x\| \leqslant\|A\|\|x\| \leqslant\|A\|
$$

and hence $\sup _{x \in B}\|A x\| \leqslant\|A\|$. Altogether, we reach the desired equalities.

Condition Number

- Rearranging

$$
\left\{\begin{array}{l}
\|\delta x\| \leqslant\left\|A^{-1}\right\|\|\delta y\| \\
\|y\| \leqslant\|A\| x \|
\end{array}\right.
$$

we obtain

$$
\frac{\|\delta x\|}{\|x\|}=\left\|A^{-1}\right\|\|A\| \frac{\|\delta y\|_{2}}{\|y\|_{2}}
$$

- Definition (Condition number). The condition number of an invertible matrix A is

$$
\kappa(A):=\|A\|\left\|A^{-1}\right\|
$$

CONDITION NUMBER

- Rearranging

$$
\left\{\begin{array}{l}
\|\delta x\| \leqslant\left\|A^{-1}\right\|\|\delta y\| \\
\|y\| \leqslant\|A\|\|x\|
\end{array}\right.
$$

we obtain

$$
\frac{\|\delta x\|}{\|x\|}=\left\|A^{-1}\right\|\|A\| \frac{\|\delta y\|_{2}}{\|y\|_{2}}
$$

- Definition (Condition number). The condition number of an invertible matrix A is

$$
\kappa(A):=\|A\|\left\|A^{-1}\right\|
$$

■ Note that in general $\kappa(A)$ depends on the norms on E and F. We only consider the ℓ^{2}-norm, in which case $\kappa(A)$ can actually be given explicitely as we will see.

CONDITION NUMBER

- Rearranging

$$
\left\{\begin{array}{l}
\|\delta x\| \leqslant\left\|A^{-1}\right\|\|\delta y\| \\
\|y\| \leqslant\|A\| x \|
\end{array}\right.
$$

we obtain

$$
\frac{\|\delta x\|}{\|x\|}=\left\|A^{-1}\right\|\|A\| \frac{\|\delta y\|_{2}}{\|y\|_{2}}
$$

■ Definition (Condition number). The condition number of an invertible matrix A is

$$
\kappa(A):=\|A\|\left\|A^{-1}\right\|
$$

- Note that in general $\kappa(A)$ depends on the norms on E and F. We only consider the ℓ^{2}-norm, in which case $\kappa(A)$ can actually be given explicitely as we will see.
- Proposition (Some properties). For $A \in \mathbb{R}^{n \times n}$ invertible

1. $\kappa(A) \geqslant 1$
2. $\kappa(A)=\kappa\left(A^{-1}\right)$
3. $\kappa(\lambda A)=\kappa(A)$ for any $\lambda \in \mathbb{R} \backslash\{0\}$

Proof.

For all A, B, for all $x,\|A B x\| \leqslant\|A\|\|B x\| \leqslant\|A\|\|B\|\|x\|$, hence $\|A B\| \leqslant\|A\|\|B\|$. In particular, $1=\left\|I_{n}\right\| \leqslant\|A\|\left\|A^{-1}\right\|=\kappa(A)$.

Singular Value Decomposition

- The singular value decomposition of A will help us solve the least-squares problem.
- Theorem (Singular Value Decomposition). Let $A \in \mathbb{R}^{m \times n}$ of rank r. There exist $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ orthogonal (i.e. $U^{\top} U=U U^{\top}=I_{m}$ and $V^{\top} V=V V^{\top}=I_{n}$) and $\Sigma \in \mathbb{R}^{m \times n}$ such that

$$
A=U \Sigma V^{\top} \quad \text { and } \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where $\Sigma_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$, and $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}>0$.

- Component by component, we have

$$
\begin{array}{lll}
\text { 1) } \quad A v_{i}=\sigma_{i} u_{i}, & A^{\top} u_{i}=\sigma_{i} v_{i} & \text { for } \quad i=1, \ldots, r \\
\text { 2) } \quad A v_{i}=0, & A^{\top} u_{i}=0 & \text { for } \quad i \geqslant r+1
\end{array}
$$

The u_{i} and v_{i} are the left and right singular vectors of A respectively, associated with the singular value σ_{j}.

