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Linear Systems

� We want to solve
Ax = y (P)

where x ∈ E (Rn), y ∈ F (Rm) and A ∈ L(E, F) (Rm×n).

� The linear mapping A

1) might not be surjective
−→ easily rectifiable through weaker reformulation

2) might not be injective
−→ needs prior information (structural properties s.a. sparsity, low-rank, etc...)

3) might be close to singular, i.e. A−1 (if it exists) might be ”almost” discontinuous.
−→ numerical instabilities: although A−1 is continuous (finite dimension), might be
ill-conditoned
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Least-Squares

� y ∈ Ran A too restrictive in practice:
- over-determined systems (m > n) in approximation
- noise in data
- model mismatches...

� Least-squares formulation

min
x∈E

||y − Ax||22 (LS)

Example (Regression).
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Normal equations

min
x∈E

||y − Ax||22 (LS)

� (LS) is equivalent to a linear system, for a different map than A

Proposition (Normal equations). x is a solution of (LS) if and only if

A>Ax = A>y, (N)

or equivalently A>(y − Ax) = 0.

Memo (Adjoint).

Ran A> = (Ker A)⊥

Ker A> = (Ran A)⊥

Proof.
Let x be a solution of (N). Hence y − Ax ∈ (Ran A)⊥ . Let
z ∈ E. Then

||y − Az||22 = ||y − Ax||22 + ||A(x − z)||22 > ||y − Ax||22

Reciprocally, assume that x is not a solution of (N), that
is w := A>(Ax − y) 6= 0. Let z = x + εw for ε > 0. Then

||y − Az||22 = ||y − Ax||22 − 2ε||w||22 + ε2||Aw||22 < ||y − Ax||22

for small ε, hence x is not a solution of (LS). 3



Existence, Unicity

min
x∈E

||y − Ax||22 (LS)

� Proposition (Existence). (LS) always admits at least one solution (in finite dimension).

Memo (Ranges, kernels).

Ran A> = (Ker A)⊥

Ker A> = (Ran A)⊥

Ker A>A = Ker A

Proof.
We have that A> ∈ Ran A> , hence

A>y ∈ (Ker A)⊥ = (Ker(A>A))⊥ = Ran(A>A)

hence (N), and therefore (LS), always has a solution.

� Proposition (Unicity). The solution is unique if and only if A is injective.

Proof.
(LS) has a unique solution ⇐⇒ (N) has a unique solution ⇐⇒
Ker A>A = {0} ⇐⇒ Ker A = {0} ⇐⇒ A is injective.
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Stability?

Example (A toy example).

� Consider Ax = y where

A =

[
1 1
1 1+ 1

n

]
, y =

[
1
1

]
Then

A−1 = n
[
1+ 1

n −1
−1 1

]
, and x = A−1y =

[
1
0

]

� Now, assume we have a small additive noise in our measurement vector, e.g. ỹ =

[
1

1+ ε

]
.

Then

x̃ = A−1ỹ =

[
1− nε
nε

]
� A small perturbation in the data may cause arbitrarily large variations in the solution
(n � ε).
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Stability

� Assume for now that A is invertible. Hence (P) and (LS) have a unique solution x = A−1y.

� Stability: let Ax = y be perturbed in A(x + δx) = y + δy. We want to compare

||δy||2
||y||2

and
||δx||2
||x||2
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Operator norm

� We have {
δx = A−1δx

y = Ax
=⇒

{
||δx||2 6 ||A−1||2,2||δx||2
||y||2 6 ||A||2,2||x||2

where ||A||2,2 is the operator norm of A

� Definition (Operator norm). The operator norm of a linear operator A ∈ L(E, F) is

||A||E,F := sup
x 6=0

||Ax||F
||x||E

= sup
||x||E=1

||Ax||F = sup
||x||E61

||Ax||F

In our case, working with the `2-norm, we write ||A||2,2 , or simply ||A||.

Proof.
(of the two last equalities)

Let S = {x ; ||x|| = 1}. The mapping E \ {0} → S, x 7→ x/||x|| is surjective, hence
||A|| = supx 6=0 ||A(x/||x||)|| = supx∈S ||Ax||.

Let B = {x ; ||x|| 6 1}. Since S ⊂ B, necessarily supx∈S ||Ax|| 6 supx∈B ||Ax||. On the
other hand, we have by definition that for any x ∈ B,

||Ax|| 6 ||A||||x|| 6 ||A||

and hence supx∈B ||Ax|| 6 ||A||. Altogether, we reach the desired equalities.
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Condition Number

� Rearranging {
||δx|| 6 ||A−1||||δy||

||y|| 6 ||A||||x||
we obtain

||δx||
||x||

= ||A−1||||A||
||δy||2
||y||2

� Definition (Condition number). The condition number of an invertible matrix A is

κ(A) := ||A||||A−1||

� Note that in general κ(A) depends on the norms on E and F. We only consider the
`2-norm, in which case κ(A) can actually be given explicitely as we will see.

� Proposition (Some properties). For A ∈ Rn×n invertible

1. κ(A) > 1

2. κ(A) = κ(A−1)

3. κ(λA) = κ(A) for any λ ∈ R \ {0}

Proof.
For all A,B, for all x, ||ABx|| 6 ||A||||Bx|| 6 ||A||||B||||x||, hence ||AB|| 6 ||A||||B||. In particular,
1 = ||In|| 6 ||A||||A−1|| = κ(A).
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Singular Value Decomposition

� The singular value decomposition of A will help us solve the least-squares problem.

� Theorem (Singular Value Decomposition). Let A ∈ Rm×n of rank r. There exist U ∈ Rm×m

and V ∈ Rn×n orthogonal (i.e. U>U = UU> = Im and V>V = VV> = In) and Σ ∈ Rm×n

such that

A = UΣV> and Σ =

[
Σ1 0
0 0

]

where Σ1 = diag(σ1, . . . , σr), and σ1 > . . . > σr > 0.

� Component by component, we have

1) Avi = σiui, A>ui = σivi for i = 1, . . . , r
2) Avi = 0, A>ui = 0 for i > r + 1

The ui and vi are the left and right singular vectors of A respectively, associated with the
singular value σj .
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