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Organisation of the course

� 10 Vorlesungen, 5 Übungen

� Vorlesungen: Montags 16.15 – 17.45 Uhr und Mittwochs 17 – 18.30 Uhr

� Übungen: Dienstags 12.15 – 13.45 Uhr

� Bewertung: Hausarbeit in Gruppen von Drei. Gruppen müssen per e-mail sich bis zum
31.1.24 anmelden. Abgabetermin: 15.03.24.

� für Fragen: paul.catala@tum.de , Büro 02.08.038
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Direct Problems

� Direct problem: determine the observations (i.e. results of measurements) y given the
input x0 and the parameters of a model A (and possible noise w).

x0 A +

w

y

forward model

� Mathematical models based on physical laws allow to predict such measurements.

� Similar inputs x0 produce similar measurements y.
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Examples of Direct Problems

� Mechanics: given x0 , v0 ,
∑
Fi and m, determine the position x(t) obeying

mẍ =
∑

Fi, ẋ(0) = v0, x(0) = x0

� Optics: given a source distribution and
a diffracting object or aperture, determine
the light intensity on a screen

� Thermodynamics: Given a domain Ω with thermic conductivity κ, whose boundary is
maintained at temperature T0 , and a heat source f , determine the temperature T in Ω in
the stationary regime {

− div(κ∇T) = f in Ω

T = T0 on ∂Ω
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the light intensity on a screen
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� Thermodynamics: Given a domain Ω with thermic conductivity κ, whose boundary is
maintained at temperature T0 , and a heat source f , determine the temperature T in Ω in
the stationary regime {

− div(κ∇T) = f in Ω

T = T0 on ∂Ω

→ Lax-Milgram theorem for elliptic EDP ensures existence and unicity
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Well-Posed Problems

� Direct problems are usually well-posed!

Definition (Hadamard 1923). A problem is well-posed1 when:

- there is a solution (existence)

- there is at most one solution (unicity)

- the solution depends continuously on the data (stability)

1Hadamard, 1923, Lectures on the Cauchy Problem in Linear Partial Differential Equations
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Inverse Problems

� Inverse problem: determine the source x0 given indirect, incomplete and possibly noisy
observations y = A(x0) + w.

x0 A +

w

y

forward model

inverse problem

� Inverse problems are usually ill-posed
- experimental data are noisy, there can be model mismatches: existence
- different parameters may lead to the similar measurements: unicity, stability
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Deconvolution

x0(u) y0(u) =
∑

u′ a(u− u′)x0(u′)

convolution

deconvolution

6



Inverse Problems are Usually Ill-Posed

Example (Deconvolution). If y = a ∗ x =: A(x), then in Fourier ŷ = â · x̂. Assuming that the
support of â is sufficiently large, a solution of the deconvolution problem is given by

x = F−1(ŷ � â) =: A−1(y).

w +

A

(Gaussian)

A−1

A

(Gaussian)

A−1
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Interpolation

x0(t) y0 = [x0(t1), . . . , x0(tm)]

(sub)sampling

interpolation
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Inverse Problems are Usually Ill-Posed

Example (Interpolation). If samples {(xj, yj)}06j6n are given, then

p̃(x) :=
n∑
j=1

yj
n∏

i=0,i 6=j

x − xi
xj − xj

is the only polynomial of degree at most n that takes the value yj at xj .

w +

A A−1

A A−1

9



X-Ray Tomography

� X-rays travel in straight lines, parameterized via
normal vector u ∈ R2 and distance to the origin s

� attenuation proportional to intensity I itself, and
distance covered ∆t

∆I(su+ tu⊥) = −I(su+ tu⊥)f (su+ tu⊥)∆t

d
dt

I(su+ tu⊥) = −I(su+ tu⊥)f (su+ tu⊥)

− ln
IL(s, u)
I0(s, u)

=

∫
R
f (su+ tu⊥)dt =: Rf (s, u)

∆t → 0

integrate between emitter (−∞) and receiver (+∞)
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Inverse Problems are Usually Ill-Posed

Example (Radon transform).

S90 ◦ R

S18 ◦ R
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Matrix Completion

u1 u2 u3 …
Love Actually 1 1 ? …
The Matrix ? -1 ? …
Notting Hill ? ? -1 …

...
...

...
...

u1 u2 u3 …
Love Actually 1 1 -1 …
The Matrix -1 -1 -1 …
Notting Hill 1 1 -1 …

...
...

...
...

x0 (y0)i,j = (x0)i,j , ∀(i, j) ∈ I

”depletion”

completion
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Interpolation

x0 (y0)i,j = (x0)i,j , ∀(i, j) ∈ Ω

degradation

inpainting
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Solving Inverse Problems

� Inverse problems arise in1,2

- microscopy,

- medical imaging,

- hydrogeology,

- chemistry,

- radar,

- quantum mechanics, …

� In practice, ill-posedness of inverse problems is accentuated by the noise, the
discretization, the quantization.

→ existence can be easily restored by relaxing the notion of solution

→ if the solution is not unique, one needs additional prior information on the the model

→ instability can be tackled via regularization of the problem

1Kirsch, 1996, An Introduction to the Mathematical Theory of Inverse Problems
2Engl, Hanke, and Neubauer, 1996, Regularization of Inverse Problems
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Mathematical Setting

� Direct problem⇔ evaluating an operator A acting on a ”model” x in a model space E
Inverse problem⇔ solving A(x) = y given y in a data space F.

� E, F are typically Hilbert spaces (e.g. E = F = L2(Ω), Ω ⊂ R2 in imaging), can even be
Banach spaces1 (e.g. space of measures2)

In this course, E = Rn (x0 models coefficients wrt e.g. standard basis, Fourier basis,
wavelet basis) and F = Rm (y is the data vector, or feature vector).

� A may be linear or non-linear

In this course, A ∈ L(Rn,Rm) may be seen as a matrix A ∈ Rm×n , and y = Ax.
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Focus of the course

� Given A ∈ L(E, F), y ∈ F, solve

Ax = y, x ∈ E

� General study via the singular value decomposition

� `2-regularization: Tikhonov regularization, spectral truncation, algorithms

� sparse regularization: `0 and `1-regularization, sparsity wrt dictionary, algorithms
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