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Exercises 5
Exercise 1 (Maximum likelihood estimation). 1. Let x ∈ R, and yi = x+wi where wi ∼ N (0, 1).

Give the Maximum Likelihood Estimator of x, i.e.

x̂ = argmaxx p(y|x)

2. Same question assuming now a multiplicative Gaussian noise, i.e. yi ∼ xwi with wi ∼ N (0, 1).
Solution.

1. If y = x+ w with w ∼i.i.d. N (0, 1), then y ∼i.i.d. N (x, 1), and hence

p(y|x) = C

n∏
i=1

exp

(
− (yi − x)2

2

)
Taking the log of this expression yields

ln(C)− 1

2

n∑
i=1

(yi − x)2

Maximizing with respect to x yields

x̂ =
1

n

n∑
i=1

yi

2. Similarly, y ∼i.i.d. N (0, x2), and hence

p(y|x) = C

xn

n∏
i=1

exp

(
− y2i
2x2

)
.

Take the log

ln(C)− n ln(x)− 1

2x2

n∑
i=1

y2i

Differentiating with respect to x and canceling yields

−n

x
+

1

x3

∑
y2i = 0

and hence x = 1√
n
||y||2

�
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Exercise 2. Let A ∈ Rm×n, y ∈ Rm, η > 0 and let || · || be an arbitrary norm on Rm. Show that the
solution of the optimization problem

x∗ = argmin ||z||1 s.t. ||Az − y|| 6 η

is m-sparse in the case of the uniqueness of the solution. Hint: show that the system of columns
{aj ; j ∈ Suppx∗} is linearly independent.

Solution. Suppose that there exists v ∈ KerA such that v 6= 0 and Supp v = Suppx∗ = I.
Then for t sufficiently small

||x∗||1 < ||x∗ + tv||1 =
∑
I

sign(xi + tvi)(xi + tvi)

=
∑
I

sign(xi)(xi + tvi)

= ||x∗||1 + t
∑
I

sign(xi)vi

and we can choose k suich that the second term is negative, which leads to a contradiction. Hence
AI is injective, and since necessarily rankA 6 m, the solution is at most m-sparse (for any larger
subset I, AI can’t be injective since rankA 6 m). �

Exercise 3 (Null Space Property). 1. Prove the uniform recovery theorem: every k-sparse x0 is
the unique solution of

min ||x||1 s.t. Ax = Ax0. (BP)

if and only if A satisfies the Null Space Property of order k, i.e. :

∀I : |I| 6 k, ∀h ∈ KerA \ 0, ||hI ||1 < ||hIc ||1

2. Show that if NSP(k) holds, then the solution of (BP) is also a solution of

min ||x||0 s.t. Ax = Ax0

3. Let x0 ∈ Rn (not necessarily k-sparse), let y = Ax0 + w, ||w|| 6 ε, and let x be a solution of

min ||x||1 s.t. ||Ax− y|| 6 ε (BP-ε)

The goal of this question is to prove the uniform robust recovery theorem: if A obeys the
robust NSP of order k, i.e.

∃0 < ρ < 1, ∃τ > 0, ∀I : |I| = k, ∀h ∈ KerA \ 0, ||hI ||1 6 ρ||hIc ||1 + τ ||Ah||2

then for all x0 ∈ Rn, any solution of (BP-ε) satisfies

||x− x0||1 6 2
1 + ρ

1− ρ
σk(x0)1 + 4

τ

1− ρ
ε

where σk(x0)1 := inf {||x0 − z||1 ; ||z||0 6 k} is the best k-sparse approximation with respect
to the `1-norm. We assume that A satisfies the robust NSP of order k.
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(a) Let h = x− x0. Show that, for any subset I,

||x0||1 + ||hIc || 6 2||(x0)Ic ||1 + ||hI ||1 + ||x||1

(b) Deduce that for a well chosen subset I,

||hIc ||1 6
1

1− ρ
(2σk(x0)1 + 2τε)

(c) Conclude.
Solution.

1. Assume that every k-sparse vector x0 is the unique solution of

min ||x||1 s.t. Ax = Ax0.

Let k ∈ N, and let I such that |I0| = k. Let h ∈ KerA \ 0, then hI is the unique solution of
the `1-minimization with Ax = AhI . But Ah = A(hI + hIc) = 0, hence A(−hIc) = AhI and
thus ||hI ||1 < ||hIc ||. Reciprocally, if A satisfies NSP(k), then for x minimizer, let h = x− x0,
and we have, for I = Suppx0, (hence |I| 6 k),

||x||1 = ||x0 + h||1 = ||x0 + hI ||1 + ||hIc || > ||x0||1 − ||hI ||1 + ||hIc ||1 > ||x0||1

unless h = 0, i.e. unless x = x0.

2. Let z be a minimezer of
min ||x||0 s.t. Ax = Ax0

Then
||z||0 6 ||x||0 = k

so z is k-sparse and obeys Az = Ax0. Therefore from NSP(k), z is the unique minimizer of
(BP), hence z = x0.

3. (a) We have
||x0||1 + ||hIc || = ||(x0)Ic ||+ ||(x0)I ||+ ||hIc ||1

6 ||(x0)Ic ||+ ||hI ||+ ||xI ||1 + ||hIc ||1
6 ||(x0)Ic ||+ ||hI ||+ ||xI + xIc ||1 + ||(x0)Ic ||1

(b) Let I be the support of the k largest entries of x0. Then |I| 6 k, and ||(x0)Ic ||1 = σk(x0)1.
Additionally, from the robust NSP,

||hI ||1 6 ρ||hIc ||1 + τ ||Ah|| 6 ρ||hIc ||1 + τ(||Ax− y||+ ||y −Ax0||) 6 ρ||hIc ||1 + 2τε.

Hence, using the inequality from the previous question we obtain

||x0||1 + (1− ρ)||hIc ||1 6 2σk(x0)1 + 2τε+ ||x||1

Noting that ||x||1 − ||x0||1 6 0 (since x is a minimizer), we obtain the desired inequality.
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4. From the robust NSP we obtain

||hI ||1 6 ρ||hIc ||1 + τ ||Ah|| 6 ρ

1− ρ
(2σk(x0)1 + 2τε) + 2τε 6

ρ

1− ρ
2σk(x0)1 +

1

1− ρ
2τε

which finally yields

||h||1 = ||hI ||1 + ||hIc ||1 6 2
1 + ρ

1− ρ
σk(x0)1 + 4

τ

1− ρ
ε

�
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