Exercises 5

Exercise 1 (Maximum likelihood estimation). 1. Let $x \in \mathbb{R}$, and $y_i = x + w_i$ where $w_i \sim \mathcal{N}(0, 1)$. Give the Maximum Likelihood Estimator of x, *i.e.*

$$\hat{x} = \operatorname{argmax}_{x} p(y|x)$$

- 2. Same question assuming now a multiplicative Gaussian noise, *i.e.* $y_i \sim xw_i$ with $w_i \sim \mathcal{N}(0, 1)$. Solution.
- 1. If y = x + w with $w \sim_{i.i.d.} \mathcal{N}(0, 1)$, then $y \sim_{i.i.d.} \mathcal{N}(x, 1)$, and hence

$$p(y|x) = C \prod_{i=1}^{n} \exp\left(-\frac{(y_i - x)^2}{2}\right)$$

Taking the log of this expression yields

$$\ln(C) - \frac{1}{2} \sum_{i=1}^{n} (y_i - x)^2$$

Maximizing with respect to x yields

$$\hat{x} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2. Similarly, $y \sim_{i.i.d.} \mathcal{N}(0, x^2)$, and hence

$$p(y|x) = \frac{C}{x^n} \prod_{i=1}^n \exp\left(-\frac{y_i^2}{2x^2}\right).$$

Take the log

$$\ln(C) - n\ln(x) - \frac{1}{2x^2} \sum_{i=1}^{n} y_i^2$$

Differentiating with respect to x and canceling yields

$$-\frac{n}{x} + \frac{1}{x^3}\sum y_i^2 = 0$$

and hence $x = \frac{1}{\sqrt{n}} \|y\|_2$

1

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, $\eta > 0$ and let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^m . Show that the solution of the optimization problem

$$x_* = \operatorname{argmin} \|z\|_1 \quad \text{s.t.} \quad \|Az - y\| \leq \eta$$

is *m*-sparse in the case of the uniqueness of the solution. *Hint:* show that the system of columns $\{a_j ; j \in \text{Supp } x_*\}$ is linearly independent.

Solution. Suppose that there exists $v \in \text{Ker } A$ such that $v \neq 0$ and $\text{Supp } v = \text{Supp } x_* = I$. Then for t sufficiently small

$$\|x_*\|_1 < \|x_* + tv\|_1 = \sum_I \operatorname{sign}(x_i + tv_i)(x_i + tv_i)$$
$$= \sum_I \operatorname{sign}(x_i)(x_i + tv_i)$$
$$= \|x_*\|_1 + t\sum_I \operatorname{sign}(x_i)v_i$$

and we can choose k suich that the second term is negative, which leads to a contradiction. Hence A_I is injective, and since necessarily rank $A \leq m$, the solution is at most m-sparse (for any larger subset I, A_I can't be injective since rank $A \leq m$).

Exercise 3 (Null Space Property). 1. Prove the uniform recovery theorem: every k-sparse x_0 is the unique solution of

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = Ax_0. \tag{BP}$$

if and only if A satisfies the Null Space Property of order k, *i.e.* :

$$\forall I: |I| \leq k, \quad \forall h \in \operatorname{Ker} A \setminus 0, \quad \|h_I\|_1 < \|h_{I^c}\|_1$$

2. Show that if NSP(k) holds, then the solution of (BP) is also a solution of

$$\min \|x\|_0 \quad \text{s.t.} \quad Ax = Ax_0$$

3. Let $x_0 \in \mathbb{R}^n$ (not necessarily k-sparse), let $y = Ax_0 + w$, $||w|| \leq \varepsilon$, and let x be a solution of

$$\min \|x\|_1 \quad \text{s.t.} \quad \|Ax - y\| \leqslant \varepsilon \tag{BP-}\varepsilon$$

The goal of this question is to prove the uniform robust recovery theorem: if A obeys the robust NSP of order k, *i.e.*

 $\exists 0<\rho<1,\quad \exists \tau>0,\quad \forall I: |I|=k,\quad \forall h\in\operatorname{Ker} A\setminus 0,\quad \|h_I\|_1\leqslant \rho \|h_{I^c}\|_1+\tau \|Ah\|_2$

then for all $x_0 \in \mathbb{R}^n$, any solution of (BP- ε) satisfies

$$\|x - x_0\|_1 \leq 2\frac{1+\rho}{1-\rho}\sigma_k(x_0)_1 + 4\frac{\tau}{1-\rho}\varepsilon$$

where $\sigma_k(x_0)_1 := \inf \{ \|x_0 - z\|_1 ; \|z\|_0 \leq k \}$ is the best k-sparse approximation with respect to the ℓ^1 -norm. We assume that A satisfies the robust NSP of order k.

(a) Let $h = x - x_0$. Show that, for any subset I,

$$||x_0||_1 + ||h_{I^c}|| \leq 2||(x_0)_{I^c}||_1 + ||h_I||_1 + ||x||_1$$

(b) Deduce that for a well chosen subset I,

$$\|h_{I^c}\|_1 \leqslant \frac{1}{1-\rho} (2\sigma_k(x_0)_1 + 2\tau\varepsilon)$$

(c) Conclude.

Solution.

1. Assume that every k-sparse vector x_0 is the unique solution of

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = Ax_0.$$

Let $k \in \mathbb{N}$, and let I such that $|I_0| = k$. Let $h \in \text{Ker } A \setminus 0$, then h_I is the unique solution of the ℓ^1 -minimization with $Ax = Ah_I$. But $Ah = A(h_I + h_{I^c}) = 0$, hence $A(-h_{I^c}) = Ah_I$ and thus $\|h_I\|_1 < \|h_{I^c}\|$. Reciprocally, if A satisfies NSP(k), then for x minimizer, let $h = x - x_0$, and we have, for $I = \text{Supp } x_0$, (hence $|I| \leq k$),

$$\|x\|_{1} = \|x_{0} + h\|_{1} = \|x_{0} + h_{I}\|_{1} + \|h_{I^{c}}\| \ge \|x_{0}\|_{1} - \|h_{I}\|_{1} + \|h_{I^{c}}\|_{1} > \|x_{0}\|_{1}$$

unless h = 0, *i.e.* unless $x = x_0$.

2. Let z be a minimezer of

$$\min \|x\|_0 \quad \text{s.t.} \quad Ax = Ax_0$$

Then

$$||z||_0 \leq ||x||_0 = k$$

so z is k-sparse and obeys $Az = Ax_0$. Therefore from NSP(k), z is the unique minimizer of (BP), hence $z = x_0$.

3. (a) We have

$$\begin{aligned} \|x_0\|_1 + \|h_{I^c}\| &= \|(x_0)_{I^c}\| + \|(x_0)_I\| + \|h_{I^c}\|_1 \\ &\leq \|(x_0)_{I^c}\| + \|h_I\| + \|x_I\|_1 + \|h_{I^c}\|_1 \\ &\leq \|(x_0)_{I^c}\| + \|h_I\| + \|x_I + x_{I^c}\|_1 + \|(x_0)_{I^c}\|_1 \end{aligned}$$

(b) Let *I* be the support of the *k* largest entries of x_0 . Then $|I| \leq k$, and $||(x_0)_{I^c}||_1 = \sigma_k(x_0)_1$. Additionally, from the robust NSP,

$$\|h_{I}\|_{1} \leqslant \rho \|h_{I^{c}}\|_{1} + \tau \|Ah\| \leqslant \rho \|h_{I^{c}}\|_{1} + \tau (\|Ax - y\| + \|y - Ax_{0}\|) \leqslant \rho \|h_{I^{c}}\|_{1} + 2\tau\varepsilon.$$

Hence, using the inequality from the previous question we obtain

$$\|x_0\|_1 + (1-\rho)\|h_{I^c}\|_1 \leq 2\sigma_k(x_0)_1 + 2\tau\varepsilon + \|x\|_1$$

Noting that $||x||_1 - ||x_0||_1 \leq 0$ (since x is a minimizer), we obtain the desired inequality.

4. From the robust NSP we obtain

$$\|h_{I}\|_{1} \leqslant \rho \|h_{I^{c}}\|_{1} + \tau \|Ah\| \leqslant \frac{\rho}{1-\rho} (2\sigma_{k}(x_{0})_{1} + 2\tau\varepsilon) + 2\tau\varepsilon \leqslant \frac{\rho}{1-\rho} 2\sigma_{k}(x_{0})_{1} + \frac{1}{1-\rho} 2\tau\varepsilon$$

which finally yields

$$\|h\|_{1} = \|h_{I}\|_{1} + \|h_{I^{c}}\|_{1} \leq 2\frac{1+\rho}{1-\rho}\sigma_{k}(x_{0})_{1} + 4\frac{\tau}{1-\rho}\varepsilon$$