Exercises 5

Exercise 1 (Maximum likelihood estimation). 1. Let $x \in \mathbb{R}$, and $y_{i}=x+w_{i}$ where $w_{i} \sim \mathcal{N}(0,1)$. Give the Maximum Likelihood Estimator of x, i.e.

$$
\hat{x}=\operatorname{argmax}_{x} p(y \mid x)
$$

2. Same question assuming now a multiplicative Gaussian noise, i.e. $y_{i} \sim x w_{i}$ with $w_{i} \sim \mathcal{N}(0,1)$.

Solution.

1. If $y=x+w$ with $w \sim_{i . i . d .} \mathcal{N}(0,1)$, then $y \sim_{i . i . d .} \mathcal{N}(x, 1)$, and hence

$$
p(y \mid x)=C \prod_{i=1}^{n} \exp \left(-\frac{\left(y_{i}-x\right)^{2}}{2}\right)
$$

Taking the \log of this expression yields

$$
\ln (C)-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-x\right)^{2}
$$

Maximizing with respect to x yields

$$
\hat{x}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

2. Similarly, $y \sim_{\text {i.i.d. }} \mathcal{N}\left(0, x^{2}\right)$, and hence

$$
p(y \mid x)=\frac{C}{x^{n}} \prod_{i=1}^{n} \exp \left(-\frac{y_{i}^{2}}{2 x^{2}}\right)
$$

Take the log

$$
\ln (C)-n \ln (x)-\frac{1}{2 x^{2}} \sum_{i=1}^{n} y_{i}^{2}
$$

Differentiating with respect to x and canceling yields

$$
-\frac{n}{x}+\frac{1}{x^{3}} \sum y_{i}^{2}=0
$$

and hence $x=\frac{1}{\sqrt{n}}\|y\|_{2}$

Exercise 2. Let $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}, \eta>0$ and let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^{m}. Show that the solution of the optimization problem

$$
x_{*}=\operatorname{argmin}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\| \leqslant \eta
$$

is m-sparse in the case of the uniqueness of the solution. Hint: show that the system of columns $\left\{a_{j} ; j \in \operatorname{Supp} x_{*}\right\}$ is linearly independent.

Solution. Suppose that there exists $v \in \operatorname{Ker} A$ such that $v \neq 0$ and $\operatorname{Supp} v=\operatorname{Supp} x_{*}=I$. Then for t sufficiently small

$$
\begin{aligned}
\left\|x_{*}\right\|_{1}<\left\|x_{*}+t v\right\|_{1} & =\sum_{I} \operatorname{sign}\left(x_{i}+t v_{i}\right)\left(x_{i}+t v_{i}\right) \\
& =\sum_{I} \operatorname{sign}\left(x_{i}\right)\left(x_{i}+t v_{i}\right) \\
& =\left\|x_{*}\right\|_{1}+t \sum_{I} \operatorname{sign}\left(x_{i}\right) v_{i}
\end{aligned}
$$

and we can choose k suich that the second term is negative, which leads to a contradiction. Hence A_{I} is injective, and since necessarily $\operatorname{rank} A \leqslant m$, the solution is at most m-sparse (for any larger subset I, A_{I} can't be injective since rank $A \leqslant m$).
Exercise 3 (Null Space Property). 1. Prove the uniform recovery theorem: every k-sparse x_{0} is the unique solution of

$$
\begin{equation*}
\min \|x\|_{1} \quad \text { s.t. } \quad A x=A x_{0} \tag{BP}
\end{equation*}
$$

if and only if A satisfies the Null Space Property of order k, i.e. :

$$
\forall I:|I| \leqslant k, \quad \forall h \in \operatorname{Ker} A \backslash 0, \quad\left\|h_{I}\right\|_{1}<\left\|h_{I^{c}}\right\|_{1}
$$

2. Show that if $\operatorname{NSP}(k)$ holds, then the solution of (BP) is also a solution of

$$
\min \|x\|_{0} \quad \text { s.t. } \quad A x=A x_{0}
$$

3. Let $x_{0} \in \mathbb{R}^{n}$ (not necessarily k-sparse), let $y=A x_{0}+w,\|w\| \leqslant \varepsilon$, and let x be a solution of

$$
\min \|x\|_{1} \quad \text { s.t. } \quad\|A x-y\| \leqslant \varepsilon
$$

The goal of this question is to prove the uniform robust recovery theorem: if A obeys the robust NSP of order k, i.e.

$$
\exists 0<\rho<1, \quad \exists \tau>0, \quad \forall I:|I|=k, \quad \forall h \in \operatorname{Ker} A \backslash 0, \quad\left\|h_{I}\right\|_{1} \leqslant \rho\left\|h_{I^{c}}\right\|_{1}+\tau\|A h\|_{2}
$$

then for all $x_{0} \in \mathbb{R}^{n}$, any solution of (BP- ε) satisfies

$$
\left\|x-x_{0}\right\|_{1} \leqslant 2 \frac{1+\rho}{1-\rho} \sigma_{k}\left(x_{0}\right)_{1}+4 \frac{\tau}{1-\rho} \varepsilon
$$

where $\sigma_{k}\left(x_{0}\right)_{1}:=\inf \left\{\left\|x_{0}-z\right\|_{1} ;\|z\|_{0} \leqslant k\right\}$ is the best k-sparse approximation with respect to the ℓ^{1}-norm. We assume that A satisfies the robust NSP of order k.
(a) Let $h=x-x_{0}$. Show that, for any subset I,

$$
\left\|x_{0}\right\|_{1}+\left\|h_{I^{c}}\right\| \leqslant 2\left\|\left(x_{0}\right)_{I^{c}}\right\|_{1}+\left\|h_{I}\right\|_{1}+\|x\|_{1}
$$

(b) Deduce that for a well chosen subset I,

$$
\left\|h_{I^{c}}\right\|_{1} \leqslant \frac{1}{1-\rho}\left(2 \sigma_{k}\left(x_{0}\right)_{1}+2 \tau \varepsilon\right)
$$

(c) Conclude.

Solution.

1. Assume that every k-sparse vector x_{0} is the unique solution of

$$
\min \|x\|_{1} \quad \text { s.t. } \quad A x=A x_{0} .
$$

Let $k \in \mathbb{N}$, and let I such that $\left|I_{0}\right|=k$. Let $h \in \operatorname{Ker} A \backslash 0$, then h_{I} is the unique solution of the ℓ^{1}-minimization with $A x=A h_{I}$. But $A h=A\left(h_{I}+h_{I^{c}}\right)=0$, hence $A\left(-h_{I^{c}}\right)=A h_{I}$ and thus $\left\|h_{I}\right\|_{1}<\left\|h_{I^{c}}\right\|$. Reciprocally, if A satisfies $\operatorname{NSP}(k)$, then for x minimizer, let $h=x-x_{0}$, and we have, for $I=\operatorname{Supp} x_{0}$, (hence $|I| \leqslant k$),

$$
\|x\|_{1}=\left\|x_{0}+h\right\|_{1}=\left\|x_{0}+h_{I}\right\|_{1}+\left\|h_{I^{c}}\right\| \geqslant\left\|x_{0}\right\|_{1}-\left\|h_{I}\right\|_{1}+\left\|h_{I^{c}}\right\|_{1}>\left\|x_{0}\right\|_{1}
$$

unless $h=0$, i.e. unless $x=x_{0}$.
2. Let z be a minimezer of

$$
\min \|x\|_{0} \quad \text { s.t. } \quad A x=A x_{0}
$$

Then

$$
\|z\|_{0} \leqslant\|x\|_{0}=k
$$

so z is k-sparse and obeys $A z=A x_{0}$. Therefore from $\operatorname{NSP}(k), z$ is the unique minimizer of (BP), hence $z=x_{0}$.
3. (a) We have

$$
\begin{aligned}
\left\|x_{0}\right\|_{1}+\left\|h_{I^{c}}\right\| & =\left\|\left(x_{0}\right)_{I^{c}}\right\|+\left\|\left(x_{0}\right)_{I}\right\|+\left\|h_{I^{c}}\right\|_{1} \\
& \leqslant\left\|\left(x_{0}\right)_{I^{c}}\right\|+\left\|h_{I}\right\|+\left\|x_{I}\right\|_{1}+\left\|h_{I^{c}}\right\|_{1} \\
& \leqslant\left\|\left(x_{0}\right)_{I^{c}}\right\|+\left\|h_{I}\right\|+\left\|x_{I}+x_{I^{c}}\right\|_{1}+\left\|\left(x_{0}\right)_{I^{c}}\right\|_{1}
\end{aligned}
$$

(b) Let I be the support of the k largest entries of x_{0}. Then $|I| \leqslant k$, and $\left\|\left(x_{0}\right)_{I^{c}}\right\|_{1}=\sigma_{k}\left(x_{0}\right)_{1}$. Additionally, from the robust NSP,

$$
\left\|h_{I}\right\|_{1} \leqslant \rho\left\|h_{I^{c}}\right\|_{1}+\tau\|A h\| \leqslant \rho\left\|h_{I^{c}}\right\|_{1}+\tau\left(\|A x-y\|+\left\|y-A x_{0}\right\|\right) \leqslant \rho\left\|h_{I^{c}}\right\|_{1}+2 \tau \varepsilon .
$$

Hence, using the inequality from the previous question we obtain

$$
\left\|x_{0}\right\|_{1}+(1-\rho)\left\|h_{I^{c}}\right\|_{1} \leqslant 2 \sigma_{k}\left(x_{0}\right)_{1}+2 \tau \varepsilon+\|x\|_{1}
$$

Noting that $\|x\|_{1}-\left\|x_{0}\right\|_{1} \leqslant 0$ (since x is a minimizer), we obtain the desired inequality.
4. From the robust NSP we obtain

$$
\left\|h_{I}\right\|_{1} \leqslant \rho\left\|h_{I^{c}}\right\|_{1}+\tau\|A h\| \leqslant \frac{\rho}{1-\rho}\left(2 \sigma_{k}\left(x_{0}\right)_{1}+2 \tau \varepsilon\right)+2 \tau \varepsilon \leqslant \frac{\rho}{1-\rho} 2 \sigma_{k}\left(x_{0}\right)_{1}+\frac{1}{1-\rho} 2 \tau \varepsilon
$$

which finally yields

$$
\|h\|_{1}=\left\|h_{I}\right\|_{1}+\left\|h_{I^{c}}\right\|_{1} \leqslant 2 \frac{1+\rho}{1-\rho} \sigma_{k}\left(x_{0}\right)_{1}+4 \frac{\tau}{1-\rho} \varepsilon
$$

