Exercises 4

Exercise 1. Show that, for $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$,

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \quad \text { s.t. } \quad a^{\top} x=b
$$

always has a one-sparse vector as minimizer. (This is perhaps the simplest illustration of the general phenomenon that solutions of undetermined ℓ^{1} minimization problems tend to be sparse.)

Exercise 2. Compute the dual of the TV denoising problem

$$
\min \frac{1}{2}\|x-y\|^{2}+\lambda\|B x\|_{1}
$$

Exercise 3. 1. Compute the proximal operator of the following functions:

- $f(x)=\mathbb{1}_{A x=y}(x)$, where A has full row-rank
- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- $f(x)=-\sum \log \left(x_{i}\right)\left(\right.$ with $\left.x_{i}>0\right)$

2. Solve

$$
\min _{x} \frac{1}{2}\|B x-z\|_{2}^{2} \quad \text { s.t. } \quad A x=b
$$

assuming that the solution exists and is unique.
Exercise 4 (Elastic Net). The "Elastic Net" regularized problem combines both ℓ^{1} and ℓ^{2} regularization. It si given as

$$
\min _{x}\|y-A x\|^{2}+\lambda_{2}\|x\|_{2}^{2}+\lambda_{1}\|x\|_{1}
$$

1. What is a suitable decomposition of the objective to perform proximal splitting on this problem?
2. Describe forward-backward updates that can be used to solve it.
