Exercises 4

Exercise 1. Show that, for $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$,

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \quad \text { s.t. } \quad a^{\top} x=b
$$

always has a one-sparse vector as minimizer. (This is perhaps the simplest illustration of the general phenomenon that solutions of undetermined ℓ^{1} minimization problems tend to be sparse.)

Solution. We have

$$
|b|=\left|\sum a_{i} x_{i}\right| \leqslant \sum\left|a_{i}\right| \leqslant\|a\|_{\infty}\|x\|_{1}
$$

and equality holds if $x_{i}=0$ for all $i \neq i_{\max }\left(\right.$ where $\left|a_{i_{\max }}\right|=\|a\|_{\infty}$), and $x_{i_{\max }}= \pm\|a\|_{\infty}^{-1}$. Hence setting

$$
\left\{\begin{array}{l}
x_{i}=0 \quad \text { for } \quad i \neq i_{\max } \\
x_{i_{\max }}=\operatorname{sign}(b)\|a\|_{\infty}^{-1}
\end{array}\right.
$$

yields a solution to the problem.

Exercise 2. Compute the dual of the TV denoising problem

$$
\min \frac{1}{2}\|x-y\|^{2}+\lambda\|B x\|_{1}
$$

Solution. We can reformulate this problem as

$$
\min \frac{1}{2}\|x-y\|^{2}+\lambda\|z\|_{1} \quad \text { s.t. } \quad z=B x
$$

The Lagrangian reads

$$
\mathcal{L}(x, z, \nu)=\frac{1}{2}\|x-y\|^{2}+\lambda\|z\|_{1}+\nu^{\top}(B x-z)
$$

Canceling the gradient with respect to x yields

$$
x=y-B^{\top} \nu
$$

Minimizing with respect to z yields

$$
\lambda\left\|z_{*}\right\|_{1}-\nu^{\top} z_{*}=\left\{\begin{array}{ccc}
0 & \text { if } & \|\nu\|_{\infty} \leqslant \lambda \\
-\infty & \text { otherwise }
\end{array}\right.
$$

Therefore, the dual problem is given by

$$
\max \nu^{\top} B y-\frac{1}{2}\left\|B^{\top} \nu\right\|^{2} \quad \text { s.t. } \quad\|\nu\|_{\infty} \leqslant \lambda
$$

Exercise 3. 1. Compute the proximal operator of the following functions:

- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- $f(x)=\mathbb{1}_{A x=y}(x)$, where A has full row-rank
- $f(x)=-\sum \log \left(x_{i}\right)\left(\right.$ with $\left.x_{i}>0\right)$

2. Solve

$$
\min _{x} \frac{1}{2}\|B x-z\|_{2}^{2} \quad \text { s.t. } \quad A x=y
$$

assuming that the solution exists and is unique.

Solution.

1. - We have

$$
\begin{aligned}
x_{*}=\operatorname{argmin}_{x} \frac{1}{2}\|z-x\|^{2}+\frac{\gamma}{2}\|A x-y\|^{2} & \Longleftrightarrow x_{*}-z+\gamma A^{\top}\left(A x_{*}-y\right)=0 \\
& \Longleftrightarrow x_{*}=\left(I+\gamma A^{\top} A\right)^{-1}\left(z+\gamma A^{\top} y\right)
\end{aligned}
$$

- The KKT conditions for

$$
\min \frac{1}{2}\|z-x\|^{2} \quad \text { s.t. } \quad A x=y
$$

give

$$
\left\{\begin{array}{l}
x-z \in \operatorname{Ran} A^{\top} \\
A x=y
\end{array}\right.
$$

Therefore

$$
\left\{\begin{array}{l}
x-z=A^{\top} \nu \\
A x=y
\end{array} \Longrightarrow y-A z=A A^{\top} \nu \Longrightarrow \nu=\left(A A^{\top}\right)^{-1}(y-A z)\right.
$$

and thus $x=z+A^{\top}\left(A A^{\top}\right)^{-1}(y-A z) . A A^{\top}$ is invertible because A has full row-rank, and in that case $A^{\top}\left(A A^{\top}\right)^{-1}=A^{\dagger}$.

- We want to minimize, for each $i,\left(z_{i}-x_{i}\right)^{2} / 2-\gamma \log x_{i}$ with respect to x_{i}, which gives

$$
\begin{aligned}
x_{i}-z_{i}+\frac{\gamma}{x_{i}}=0 & \Longleftrightarrow x_{i}^{2}-z_{i} x_{i}-\gamma=0 \\
& \Longleftrightarrow x_{i}=\frac{z_{i}+\sqrt{z_{i}^{2}+4 \gamma}}{2}
\end{aligned}
$$

since $x_{i}>0$.
2. The optimality conditions read

$$
\left\{\begin{array} { l }
{ B ^ { \top } (B x - z) = A ^ { \top } \nu } \\
{ A x = y }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
B^{\top} B x-A^{\top} \nu=B^{\top} z \\
A x=y
\end{array}\right.\right.
$$

which can be written

$$
\left[\begin{array}{cc}
B^{\top} B & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\nu
\end{array}\right]=\left[\begin{array}{c}
B^{\top} z \\
y
\end{array}\right]
$$

If there is a unique solution, it then given by

$$
\left[\begin{array}{c}
x \\
\nu
\end{array}\right]=\left[\begin{array}{cc}
B^{\top} B & A^{\top} \\
A & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
B^{\top} z \\
y
\end{array}\right]
$$

Exercise 4 (Elastic Net). The "Elastic Net" regularized problem combines both ℓ^{1} and ℓ^{2} regularization. It si given as

$$
\min _{x}\|y-A x\|^{2}+\lambda_{2}\|x\|_{2}^{2}+\lambda_{1}\|x\|_{1}
$$

1. What is a suitable decomposition of the objective to perform proximal splitting on this problem?
2. Describe forward-backward updates that can be used to solve it.

Solution.

1. Several decompositions of the objective are possible, but the simplest one is to consider

$$
\begin{aligned}
& F(x)=\|y-A x\|^{2}+\lambda_{2}\|x\|_{2}^{2} \\
& G(x)=\lambda_{1}\|x\|_{1}
\end{aligned}
$$

2. The proximal operator for $\|x\|_{1}$ is the soft-thresholding operator S_{γ} (with $\gamma=\lambda_{1}$ here). The gradient step on the smooth part of the objective reads

$$
x_{k+1}=x_{k}-\tau 2 A^{\top}\left(A x_{k}-y\right)-2 \tau \lambda_{2} x_{k}=x_{k}-\tau\left(\left(A^{\top} A+\lambda_{2} I\right) x_{k}+A^{\top} y\right)
$$

hence the forward-backward update reads

$$
x_{k+1}=S_{\lambda_{1}}\left(x_{k}-\tau\left(\left(A^{\top} A+\lambda_{2} I\right) x_{k}+A^{\top} y\right)\right)
$$

