Exercises 3

Exercise 1. 1. Let $A \in \mathbb{R}^{m \times n}$, let $I \in \mathbb{R}^{n \times n}$, $\lambda > 0$ and

$$K = \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} \in \mathbb{R}^{(m+n) \times n}$$

Show that the singular values of K satisfy $\lambda_j \ge \sqrt{\delta}$, $j = 1, \ldots, n$.

2. Let $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$ and $x_{\lambda} \in \mathbb{R}^n$ be minimizer of

$$||Ax - y||^2 + \lambda ||x||^2, \quad \delta > 0$$

Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be defined as

$$f(\lambda) = \|Ax_{\lambda} - y\|^2.$$

Show that

$$f'(\lambda) = 2\lambda \langle x_{\lambda}, (A^{\top}A + \lambda I)^{-1} x_{\lambda} \rangle.$$

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$ such that Ker $A = \{0\}$ (m > n, and A full column rank). Let x be the solution of Ax = y for some $y \in \text{Ran } A$, and let $y^{\delta} \in \mathbb{R}^m$ such that $\|y^{\delta} - y\| \leq \delta$.

We define

$$q(\lambda, \sigma) = \begin{cases} 1 & \text{if } \sigma^2 \ge \lambda \\ 0 & \text{if } \sigma^2 < \lambda \end{cases}$$

and the operator R_{λ} such that

$$R_{\lambda}y = \sum_{i=1}^{n} \frac{q(\lambda, \sigma_i)}{\sigma_i} \langle y, u_i \rangle v_i = \sum_{\sigma_i^2 \ge \lambda} \frac{1}{\sigma_i} \langle y, u_i \rangle v_i,$$

where $\{\sigma_i, u_i, v_i\}$ are the singular values and vectors of A. Let $x_{\lambda}^{\delta} = R_{\lambda} y^{\delta}$.

1. Let $\lambda = \lambda(\delta) = c\delta^{\theta}$ where c > 0 and $0 < \theta < 2$. Show that

$$\|x_{\lambda}^{\delta} - x\| \to 0$$
 where $\delta \to 0$

- 2. Assume that $x = A^{\top} z$ for some $z \in \mathbb{R}^m$ (in fact this is true because $\operatorname{Ran} A^{\top} = \operatorname{Ran} A^{\dagger} = \operatorname{Span}(v_1, \ldots, v_r)$.) Deduce the θ for which the convergence of x_{λ}^{δ} towards x when $\delta \to 0$ is optimal. What is the corresponding rate?
- 3. Assume that $x = A^{\top}Aw$ for some $w \in \mathbb{R}^n$ (in fact this is true because $\operatorname{Ran} A^{\top}A = \operatorname{Ran} A^{\top} = \operatorname{Span}(v_1, \ldots, v_r)$.) Deduce the θ for which the convergence of x_{λ}^{δ} is optimal. What is the corresponding rate?

Exercise 3 (Duality). 1. Compute the dual problem of the least-squares problem with Tikhonov regularization.

2. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . We define its dual norm as

 $\forall z \in \mathbb{R}^n, \quad \|z\|_* = \sup\left\{z^\top x \; ; \; \|x\| \leqslant 1\right\}$

- Show that the dual norm of the Euclidean norm $\|\cdot\|_2$ is the Euclidean norm
- Show that the dual norm of $\|\cdot\|_\infty$ is $\|\cdot\|_1.$
- Show that the dual norm of $\|\cdot\|_1$ is $\|\cdot\|_\infty.$