Exercises 3

Exercise 1. 1. Let $A \in \mathbb{R}^{m \times n}$, let $I \in \mathbb{R}^{n \times n}, \lambda>0$ and

$$
K=\left[\begin{array}{c}
A \\
\sqrt{\lambda} I
\end{array}\right] \in \mathbb{R}^{(m+n) \times n}
$$

Show that the singular values of K satisfy $\lambda_{j} \geqslant \sqrt{\lambda}, j=1, \ldots, n$.
2. Let $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$ and $x_{\lambda} \in \mathbb{R}^{n}$ be minimizer of

$$
\|A x-y\|^{2}+\lambda\|x\|^{2}, \quad \lambda>0
$$

Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be defined as

$$
f(\lambda)=\left\|A x_{\lambda}-y\right\|^{2}
$$

Show that

$$
f^{\prime}(\lambda)=2 \lambda\left\langle x_{\lambda},\left(A^{\top} A+\lambda I\right)^{-1} x_{\lambda}\right\rangle
$$

Solution.

1. Since $K^{*} K=A^{*} A+\lambda I$, whose eigenvalues are $\sigma_{i}^{2}+\lambda$, we have that $\lambda_{i}=\sqrt{\sigma_{i}^{2}+\lambda} \geqslant \sqrt{\lambda}$
2. x_{λ} can be expanded in terms of the SVD as

$$
x_{\lambda}=\sum_{i=1}^{n} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}\left\langle y, u_{i}\right\rangle v_{i}
$$

Hence, using that $A v_{i}=\sigma_{i} u_{i}$, and $y=\sum\left\langle y, u_{i}\right\rangle u_{i}$, we have that

$$
\left\|A x_{\lambda}-y\right\|^{2}=\sum_{i=1}^{n}\left(\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}-1\right)^{2}\left\langle y, u_{i}\right\rangle^{2}
$$

Derivating with respect to λ yields

$$
\begin{aligned}
f^{\prime}(\lambda) & =2 \sum_{i=1}^{n}\left(1-\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}\right) \frac{\sigma_{i}^{2}}{\left(\sigma_{i}^{2}+\lambda\right)^{2}}\left\langle y, u_{i}\right\rangle^{2} \\
& =2 \lambda \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{\left(\sigma_{i}^{2}+\lambda\right)^{3}}\left\langle y, u_{i}\right\rangle^{2} \\
& =2 \lambda \sum_{i=1}^{n} \frac{\sigma_{i}\left\langle y, u_{i}\right\rangle}{\sigma_{i}^{2}+\lambda} \cdot \frac{1}{\sigma_{i}^{2}+\lambda} \frac{\sigma_{i}\left\langle y, u_{i}\right\rangle}{\sigma_{i}^{2}+\lambda} \\
& =2 \lambda\left\langle V^{\top} x_{\lambda},\left(\Sigma^{2}+\lambda I\right)^{-1} V^{\top} x_{\lambda}\right\rangle \\
& =2 \lambda\left\langle x_{\lambda},\left(A^{\top} A+\lambda I\right)^{-1} x_{\lambda}\right\rangle
\end{aligned}
$$

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$ such that $\operatorname{Ker} A=\{0\}(m>n$, and A full column rank). Let x be the solution of $A x=y$ for some $y \in \operatorname{Ran} A$, and let $y^{\delta} \in \mathbb{R}^{m}$ such that $\left\|y^{\delta}-y\right\| \leqslant \delta$.

We define

$$
q(\lambda, \sigma)=\left\{\begin{array}{lll}
1 & \text { if } & \sigma^{2} \geqslant \lambda \\
0 & \text { if } & \sigma^{2}<\lambda
\end{array}\right.
$$

and the operator R_{λ} such that

$$
R_{\lambda} y=\sum_{i=1}^{n} \frac{q\left(\lambda, \sigma_{i}\right)}{\sigma_{i}}\left\langle y, u_{i}\right\rangle v_{i}=\sum_{\sigma_{i}^{2} \geqslant \lambda} \frac{1}{\sigma_{i}}\left\langle y, u_{i}\right\rangle v_{i},
$$

where $\left\{\sigma_{i}, u_{i}, v_{i}\right\}$ are the singular values and vectors of A. Let $x_{\lambda}^{\delta}=R_{\lambda} y^{\delta}$.

1. Let $\lambda=\lambda(\delta)=c \delta^{\theta}$ where $c>0$ and $0<\theta<2$. Show that

$$
\left\|x_{\lambda}^{\delta}-x\right\| \rightarrow 0 \quad \text { where } \quad \delta \rightarrow 0
$$

2. Assume that $x=A^{\top} z$ for some $z \in \mathbb{R}^{m}$ (in fact this is true because $\operatorname{Ran} A^{\top}=\operatorname{Ran} A^{\dagger}=$ $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$.) Deduce the θ for which the convergence of x_{λ}^{δ} towards x when $\delta \rightarrow 0$ is optimal. What is the corresponding rate?
3. Assume that $x=A^{\top} A w$ for some $w \in \mathbb{R}^{n}$ (in fact this is true because $\operatorname{Ran} A^{\top} A=\operatorname{Ran} A^{\top}=$ $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$.) Deduce the θ for which the convergence of x_{λ}^{δ} is optimal. What is the corresponding rate?

Solution.

1. Let $x_{\lambda}=R_{\lambda} y$. We have

$$
\left\|x_{\lambda}^{\delta}-x\right\|^{2} \leqslant\left\|x_{\lambda}^{\delta}-x_{\lambda}\right\|^{2}+\left\|x_{\lambda}-x\right\|^{2}
$$

First,

$$
\left\|x_{\lambda}^{\delta}-x_{\lambda}\right\|^{2}=\left\|\sum_{\sigma_{i}^{2} \geqslant c \delta^{\theta}} \frac{1}{\sigma_{i}}\left\langle y^{d}-y, u_{i}\right\rangle v_{i}\right\|^{2} \leqslant \frac{1}{c \delta^{\theta}}\left\|y^{\delta}-y\right\|^{2} \leqslant \frac{\delta^{2-\theta}}{c} \rightarrow_{\delta \rightarrow 0} 0
$$

Second,

$$
\left\|x_{\lambda}-x\right\|^{2}=\left\|\sum_{i} \frac{q\left(c \delta^{\theta}, \sigma_{i}\right)-1}{\sigma_{i}}\left\langle y, u_{i}\right\rangle v_{i}\right\| \rightarrow_{\delta \rightarrow 0} 0
$$

2. Writing $x=A^{\top} z$, we have $x=\sum_{i=1}^{n} \sigma_{i}\left\langle z, u_{i}\right\rangle v_{i}$, and therefore

$$
\begin{aligned}
x_{\lambda}-x & =\sum_{i=1}^{n}\left(\frac{q\left(c \delta^{\theta}, \sigma_{i}\right)}{\sigma_{i}}\left\langle y, u_{i}\right\rangle-\sigma_{i}\left\langle z, u_{i}\right\rangle\right) v_{i} \\
& =\sum_{\sigma_{i}^{2} \geqslant c \delta^{\theta}}\left(\frac{1}{\sigma_{i}}\left\langle y, u_{i}\right\rangle-\sigma_{i}\left\langle z, u_{i}\right\rangle\right) v_{i}-\sum_{\sigma_{i}^{2}<c \delta^{\theta}} \sigma_{i}\left\langle z, u_{i}\right\rangle v_{i} \\
& =0-\sum_{\sigma_{i}^{2}<c \delta^{\theta}} \sigma_{i}\left\langle z, u_{i}\right\rangle v_{i}
\end{aligned}
$$

where the last equation can be found by writing $y=A A^{\top} z$ and using $A^{\top} u_{i}=\sigma_{i} v_{i}$ for $i=1, \ldots, n$. Hence

$$
\left\|x_{\lambda}-x\right\|^{2} \leqslant c \delta^{\theta}\|z\|^{2}
$$

Therefore, combining everything,

$$
\left\|x_{\lambda}^{\delta}-x\right\| \leqslant \frac{\delta^{1-\theta / 2}}{\sqrt{c}}+\sqrt{c} \delta^{\theta / 2}\|z\|
$$

The rate is optimal when $\theta=1$.
3. The reasoning is strictly identical, and we obtain

$$
\left\|x_{\lambda}^{\delta}-x\right\| \leqslant \frac{\delta^{1-\theta / 2}}{\sqrt{c}}+c \delta^{\theta}\|z\|
$$

The optimal rate satisfy $\theta=1-\theta / 2$: it is attained for $\theta=2 / 3$.

Exercise 3 (Duality). 1. Compute the dual problem of the least-squares problem with Tikhonov regularization.
2. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. We define its dual norm as

$$
\forall z \in \mathbb{R}^{n}, \quad\|z\|_{*}=\sup \left\{z^{\top} x ;\|x\| \leqslant 1\right\}
$$

- Show that the dual norm of the Euclidean norm $\|\cdot\|_{2}$ is the Euclidean norm
- Show that the dual norm of $\|\cdot\|_{\infty}$ is $\|\cdot\|_{1}$.
- Show that the dual norm of $\|\cdot\|_{1}$ is $\|\cdot\|_{\infty}$.

Solution.

1. The problem can be reformulated as

$$
\min \frac{1}{2}\|z-y\|^{2}+\frac{1}{2}\|x\|^{2} \quad \text { s.t. } \quad z=A x
$$

The Lagrangian for this problem is

$$
\mathcal{L}(x, z, \nu)=\frac{1}{2}\|z-y\|^{2}+\frac{\lambda}{2}\|x\|^{2}+\nu^{\top}(A x-z)
$$

Minimizing over x yields $\tilde{x}=-\frac{1}{\lambda} A^{\top} \nu$
Minimizing over z yields $\tilde{z}=\nu$.
Hence,

$$
\begin{aligned}
g(\nu)=\min _{x, z} \mathcal{L}(x, z, \nu)=\mathcal{L}(\tilde{x}, \tilde{z}, \nu) & =-\nu^{\top} y-\frac{1}{2}\|\nu\|^{2}-\frac{1}{2 \lambda}\left\|A^{\top} \nu\right\|^{2}+\frac{1}{2}\|y\|^{2} \\
& =-\nu^{\top} y-\frac{1}{2} \nu^{\top}\left(\lambda^{-1} A A^{\top}+I\right) \nu+\frac{1}{2}\|y\|^{2}
\end{aligned}
$$

and the dual problem is simply $\max g(\nu)$
2. - By Cauchy-Schwarz, we have $\left|z^{\top} x\right| \leqslant\|z\|\|x\|$ with equality if $x=z /\|z\|_{2}$. Hence

$$
\sup \left\{z^{\top} x ;\|x\|_{2} \leqslant 1\right\}=\|z\|_{2}
$$

- Let x such that $\|x\|_{\infty} \leqslant 1$. Then $\left|z^{\top} x\right| \leqslant \sum\left|z_{i}\right|\left|x_{i}\right| \leqslant \sum\left|z_{i}\right|=\|z\|_{1}$, with equality if $x_{i}=\operatorname{sign}\left(z_{i}\right)$ for all i. Hence

$$
\sup \left\{z^{\top} x ;\|x\|_{\infty} \leqslant 1\right\}=\|z\|_{1}
$$

- Let x such that $\|x\|_{1} \leqslant 1$. Then $\left|z^{\top} x\right| \leqslant \sum\left|z_{i}\right|\left|x_{i}\right| \leqslant\left|z_{i_{\max }}\right|\|x\|_{1} \leqslant\|z\|_{\infty}$, with equality if $x=e_{i_{\max }}$

$$
\sup \left\{z^{\top} x ;\|x\|_{1} \leqslant 1\right\}=\|z\|_{\infty}
$$

