Exercise 2

Exercise 1. 1. Compute the singular value decomposition of (some of) the following matrices

$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

2. With $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, use the SVD of A to draw the set $\{x \in \mathbb{R}^2 ; \|Ax\|_2 = 1\}$. How can you determine the singular values and right singular vectors of A from this figure?

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$ and $A = U \Sigma V^{\top}$ its singular value decomposition. We write u_i and v_i the left and right singular vectors respectively, and $\sigma_1 \ge \ldots \ge \sigma_r > 0$ the non-zero singular values.

1. We have seen that $||A||_{2,2} := \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1$. Show that

$$\sigma_r = \inf_{x \in (\operatorname{Ker} A)^{\perp} \setminus \{0\}} \frac{\|Ax\|_2}{\|x\|_2}$$

2. For k < r, we define

$$A_k := \sum_{i=1}^k \sigma_i u_i v_i^\top$$

- *i.e.* $A_k = U \Sigma_k V^{\top}$, where Σ_k is obtained from Σ by setting $\sigma_{k+1} = \ldots = \sigma_r = 0$.
 - Show that $||A A_k||_{2,2} = \sigma_{k+1}$.
 - Show that A_k actually minimizes $||A B||_{2,2}$ among all $B \in \mathbb{R}^{m \times n}$ such that rank $B \leq k$ (this result is known as the Eckart-Young-Mirsky theorem).

Exercise 3. We define the circular convolution of $a \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$ as the vector $(a * x) \in \mathbb{R}^n$ whose entries are given by

$$\forall k \in \{1, \dots, n\}, \quad (a * x)_k := \sum_{i=1}^n a_{[k-i]} x_i$$

where $[i] = i \pmod{n}$. For $a \in \mathbb{R}^n$, let $A : \mathbb{R}^n \mapsto \mathbb{R}^n, x \mapsto a * x$.

1. Write the matrix of A.

2. Let $F \in \mathbb{C}^{n \times n}$ be the DFT matrix, given by

$$F_{kl} = \exp\left(-\frac{2\imath\pi kl}{n}\right), \quad \forall 0 \leq k, l \leq n-1$$

. Show that

$$AF = \text{Diag}(\hat{a})F,$$

where $\hat{a} := Fa$ is the discrete Fourier transform of a. Deduce the singular values σ_j of A. 3. Let $a = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \end{bmatrix}^{\top}$. Compute the condition number of A in that case.

Exercise 4 (Pseudo-inverse). Let $A \in \mathbb{R}^{m \times n}$ and A^{\dagger} its Moore-Penrose pseudo-inverse.

1. Check the identities

$$A^{\dagger}AA^{\dagger} = A^{\dagger},$$
$$AA^{\dagger}A = A,$$

2. Show that $A^{\dagger}A$ and AA^{\dagger} are orthogonal projections on $(\text{Ker } A)^{\perp}$ and Ran A respectively.