## Exercise 2

Exercise 1. 1. Compute the singular value decomposition of (some of) the following matrices

$$
\left(\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

2. With $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$, use the SVD of $A$ to draw the set $\left\{x \in \mathbb{R}^{2} ;\|A x\|_{2}=1\right\}$. How can you determine the singular values and right singular vectors of $A$ from this figure?

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$ and $A=U \Sigma V^{\top}$ its singular value decomposition. We write $u_{i}$ and $v_{i}$ the left and right singular vectors respectively, and $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}>0$ the non-zero singular values.

1. We have seen that $\|A\|_{2,2}:=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}$. Show that

$$
\sigma_{r}=\inf _{x \in(\operatorname{Ker} A)^{\perp} \backslash\{0\}} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

2. For $k<r$, we define

$$
A_{k}:=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{\top}
$$

i.e. $A_{k}=U \Sigma_{k} V^{\top}$, where $\Sigma_{k}$ is obtained from $\Sigma$ by setting $\sigma_{k+1}=\ldots=\sigma_{r}=0$.

- Show that $\left\|A-A_{k}\right\|_{2,2}=\sigma_{k+1}$.
- Show that $A_{k}$ actually minimizes $\|A-B\|_{2,2}$ among all $B \in \mathbb{R}^{m \times n}$ such that rank $B \leqslant k$ (this result is known as the Eckart-Young-Mirsky theorem).

Exercise 3. We define the circular convolution of $a \in \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$ as the vector $(a * x) \in \mathbb{R}^{n}$ whose entries are given by

$$
\forall k \in\{1, \ldots, n\}, \quad(a * x)_{k}:=\sum_{i=1}^{n} a_{[k-i]} x_{i}
$$

where $[i]=i(\bmod n)$. For $a \in \mathbb{R}^{n}$, let $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}, x \mapsto a * x$.

1. Write the matrix of $A$.
2. Let $F \in \mathbb{C}^{n \times n}$ be the DFT matrix, given by

$$
F_{k l}=\exp \left(-\frac{2 \imath \pi k l}{n}\right), \quad \forall 0 \leqslant k, l \leqslant n-1
$$

. Show that

$$
A F=\operatorname{Diag}(\hat{a}) F,
$$

where $\hat{a}:=F a$ is the discrete Fourier transform of $a$. Deduce the singular values $\sigma_{j}$ of $A$.
3. Let $a=\left[\begin{array}{lllll}1 & -1 & 0 & \ldots & 0\end{array}\right]^{\top}$. Compute the condition number of $A$ in that case.

Exercise 4 (Pseudo-inverse). Let $A \in \mathbb{R}^{m \times n}$ and $A^{\dagger}$ its Moore-Penrose pseudo-inverse.

1. Check the identities

$$
\begin{aligned}
& A^{\dagger} A A^{\dagger}=A^{\dagger} \\
& A A^{\dagger} A=A
\end{aligned}
$$

2. Show that $A^{\dagger} A$ and $A A^{\dagger}$ are orthogonal projections on $(\operatorname{Ker} A)^{\perp}$ and Ran $A$ respectively.
