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Exercise 2
Exercise 1. 1. Compute the singular value decomposition of (some of) the following matrices

(
3 0
0 −2

)
,

(
1 1
0 0

)
,

0 2
0 0
0 0

 ,

(
1 0 1
0 1 0

)

2. With A =

(
3 1
1 3

)
, use the SVD of A to draw the set

{
x ∈ R2 ; ||Ax||2 = 1

}
. How can you

determine the singular values and right singular vectors of A from this figure?
Solution.

1. • A>
1 A1 =

[
9 0
0 4

]
, hence A1 =

[
1 0
0 −1

] [
3 0
0 2

] [
1 0
0 1

]
• A>

2 A2 =

[
1 1
1 1

]
, diagonalisable with eigenvalues

[
2 0
0 0

]
and eigenvectors

[
1√
2

− 1√
2

1√
2

1√
2

]
,

hence A2 =

[
1 0
0 1

] [√
2 0
0 0

][ 1√
2

1√
2

− 1√
2

1√
2

]

• A>
3 A3 =

[
4 0
0 0

]
, hence A3 =

1 0 0
0 1 0
0 0 1

2 0
0 0
0 0

[
0 1
1 0

]

• A>
4 A4 =

1 0 1
0 1 0
1 0 1

, diagonalisable with eigenvalues

2 0 0
0 1 0
0 0 0

 and eigenvectors

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

,

hence A4 =

[
1 0
0 1

] [√
2 0 0
0 1 0

] 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2


2. We have A>A =

[
10 6
6 10

]
diagonalisable with eigenvalues

[
16 0
0 4

]
and (normalized) eigen-

vectors

[
1√
2

− 1√
2

1√
2

1√
2

]
, hence A =

[
1√
2

− 1√
2

1√
2

1√
2

] [
4 0
0 2

] [ 1√
2

1√
2

− 1√
2

1√
2

]
= UΣU>.

||Ax||22 = 1 ⇔ 4(u>
1 x)

2 + 2(u>
2 x)

2 = 1

In the basis (u1, u2), this is the equation of an ellipse of semi-axis 1/2 (along u2) and 1/4
(along u1).
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Exercise 2. Let A ∈ Rm×n and A = UΣV > its singular value decomposition. We write ui and vi
the left and right singular vectors respectively, and σ1 > . . . > σr > 0 the non-zero singular values.

1. We have seen that ||A||2,2 := supx 6=0
||Ax||2
||x||2 = σ1. Show that

σr = inf
x∈(KerA)⊥\{0}

||Ax||2
||x||2

2. For k < r, we define

Ak :=

k∑
i=1

σiuiv
>
i ,

i.e. Ak = UΣkV
>, where Σk is obtained from Σ by setting σk+1 = . . . = σr = 0.

• Show that ||A−Ak||2,2 = σk+1.
• Show that Ak actually minimizes ||A−B||2,2 among all B ∈ Rm×n such that rankB 6 k

(this result is known as the Eckart-Young-Mirsky theorem).

Solution.

1. We have, for any x ∈ (KerA)>,

||Ax||22 = ||UΣV >x||22 = ||ΣV >x||2

=

r∑
i=1

σ2
i 〈vi, x〉2

> σ2
r

r∑
i=1

〈vi, x〉2

= σ2
r ||V >x||2 (since x ∈ (KerA)>, x ∈ Span 0(v1, . . . , vr))

= σr||x||2

2. • We have
||A−Ak||2,2 = ||U(Σ− Σk)V

>||2,2
= ||Σ− Σk||2
= ||Diag(0, . . . , σk+1, . . . , σr, 0, . . .)||2,2
= σk+1

• Let B ∈ Rm×n be of rank at most k. Let x ∈ KerB ∩ Span(v1, . . . , vk+1). Such a x
exists: since

dimKerB + dimSpan(v1, . . . , vk+1) > n− k + k + 1 = n+ 1 > n,

this implies that KerB ∩ Span(v1, . . . , vk+1) 6= {0}. Thus

||Ax−Bx||2 = ||Ax||2 =

r∑
i=1

σ2
i 〈vi, x〉2 =

k+1∑
i=1

σ2
i 〈vi, x〉2 > σ2

k+1||x||2,

and therefore ||A−B|| > ||A−Ak|| for all B of rank at most k.
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Exercise 3. We define the circular convolution of a ∈ Rn and x ∈ Rn as the vector (a ∗ x) ∈ Rn

whose entries are given by

∀k ∈ {1, . . . , n}, (a ∗ x)k :=

n∑
i=1

a[k−i]xi

where [i] = i (mod n). For a ∈ Rn, let A : Rn 7→ Rn, x 7→ a ∗ x.

1. Write the matrix of A.

2. Let F ∈ Cn×n be the DFT matrix, given by

Fkl = exp

(
−2ıπkl

n

)
, ∀0 6 k, l 6 n− 1

. Show that
AF = F Diag(â),

where â := Fa is the discrete Fourier transform of a. Deduce the singular values σj of A.

3. Let a =
[
1 −1 0 . . . 0

]>. Compute the condition number of A in that case.

Solution.

1. We have

A =


a0 an . . . a1
a1 a1 . . . a2
...

...
...

an−1 an−2 . . . a0


2. We have

(Afj)i =

n−1∑
k=0

a[i−k] exp

(
−2ıπkj

n

)

=

n−1∑
k=0

ak exp

(
−2ıπ(i− k)j

n

)

= exp

(
−2ıπij

n

) n−1∑
k=0

ak exp

(
2ıπkj

n

)
= exp

(
−2ıπij

n

)
âj

hence Afj = âjfj , and AF = F Diag(â).

3. The matrix 1√
n
F is orthogonal (exercise), and we have

A =
1√
n
F Diag(nFa)

1√
n
F ∗.

This does not give us the SVD of A since the coefficients nFa are not real, but the singular
values are immediately deduced from the eigenvalues of A>A, i.e. σj = n|âj |.
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4. With this particular example we have

âk = 1− exp

(
−2ıπ

k

n

)
.

Hence |âk| is smallest and non-zero for k = 1/n (angle 0), and largest when k/n ' 1/2 (angle
pi), more precisely when k = bn/2c. Therefore we have

κ(A) =
|1− exp

(
− 2ıπbn/2c

n

)
|

|1− exp
(
− 2ıπ

n

)
|

.

Note in particular that κ(A) → ∞ if n → ∞.

�

Exercise 4 (Pseudo-inverse). Let A ∈ Rm×n and A† its Moore-Penrose pseudo-inverse.

1. Check the identities
A†AA† = A†,

AA†A = A,

2. Show that A†A and AA† are orthogonal projections on (KerA)⊥ and RanA respectively.

Solution.

1. These relations are easily obtained using the singular value decomposition of A.

2.
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