Exercise 2

Exercise 1. 1. Compute the singular value decomposition of (some of) the following matrices

$$
\left(\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

2. With $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$, use the SVD of A to draw the set $\left\{x \in \mathbb{R}^{2} ;\|A x\|_{2}=1\right\}$. How can you determine the singular values and right singular vectors of A from this figure?

Solution.

1. $A_{1}^{\top} A_{1}=\left[\begin{array}{ll}9 & 0 \\ 0 & 4\end{array}\right]$, hence $A_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- $A_{2}^{\top} A_{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, diagonalisable with eigenvalues $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ and eigenvectors $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$, hence $A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
- $A_{3}^{\top} A_{3}=\left[\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right]$, hence $A_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- $A_{4}^{\top} A_{4}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$, diagonalisable with eigenvalues $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ and eigenvectors $\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\end{array}\right]$, hence $A_{4}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\end{array}\right]$

2. We have $A^{\top} A=\left[\begin{array}{cc}10 & 6 \\ 6 & 10\end{array}\right]$ diagonalisable with eigenvalues $\left[\begin{array}{cc}16 & 0 \\ 0 & 4\end{array}\right]$ and (normalized) eigen-

$$
\begin{gathered}
\text { vectors }\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \text {, hence } A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=U \Sigma U^{\top} . \\
\|A x\|_{2}^{2}=1 \Leftrightarrow 4\left(u_{1}^{\top} x\right)^{2}+2\left(u_{2}^{\top} x\right)^{2}=1
\end{gathered}
$$

In the basis $\left(u_{1}, u_{2}\right)$, this is the equation of an ellipse of semi-axis $1 / 2$ (along u_{2}) and $1 / 4$ (along u_{1}).

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$ and $A=U \Sigma V^{\top}$ its singular value decomposition. We write u_{i} and v_{i} the left and right singular vectors respectively, and $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}>0$ the non-zero singular values.

1. We have seen that $\|A\|_{2,2}:=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}$. Show that

$$
\sigma_{r}=\inf _{x \in(\operatorname{Ker} A)^{\perp} \backslash\{0\}} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

2. For $k<r$, we define

$$
A_{k}:=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{\top}
$$

i.e. $A_{k}=U \Sigma_{k} V^{\top}$, where Σ_{k} is obtained from Σ by setting $\sigma_{k+1}=\ldots=\sigma_{r}=0$.

- Show that $\left\|A-A_{k}\right\|_{2,2}=\sigma_{k+1}$.
- Show that A_{k} actually minimizes $\|A-B\|_{2,2}$ among all $B \in \mathbb{R}^{m \times n}$ such that $\operatorname{rank} B \leqslant k$ (this result is known as the Eckart-Young-Mirsky theorem).

Solution.

1. We have, for any $x \in(\operatorname{Ker} A)^{\top}$,

$$
\begin{aligned}
\|A x\|_{2}^{2}=\left\|U \Sigma V^{\top} x\right\|_{2}^{2} & =\left\|\Sigma V^{\top} x\right\|^{2} \\
& =\sum_{i=1}^{r} \sigma_{i}^{2}\left\langle v_{i}, x\right\rangle^{2} \\
& \geqslant \sigma_{r}^{2} \sum_{i=1}^{r}\left\langle v_{i}, x\right\rangle^{2} \\
& =\sigma_{r}^{2}\left\|V^{\top} x\right\|_{2} \quad\left(\text { since } x \in(\operatorname{Ker} A)^{\top}, x \in \operatorname{Span} 0\left(v_{1}, \ldots, v_{r}\right)\right) \\
& =\sigma_{r}\|x\|_{2}
\end{aligned}
$$

2. - We have

$$
\begin{aligned}
\left\|A-A_{k}\right\|_{2,2} & =\left\|U\left(\Sigma-\Sigma_{k}\right) V^{\top}\right\|_{2,2} \\
& =\left\|\Sigma-\Sigma_{k}\right\|_{2} \\
& =\left\|\operatorname{Diag}\left(0, \ldots, \sigma_{k+1}, \ldots, \sigma_{r}, 0, \ldots\right)\right\|_{2,2} \\
& =\sigma_{k+1}
\end{aligned}
$$

- Let $B \in \mathbb{R}^{m \times n}$ be of rank at most k. Let $x \in \operatorname{Ker} B \cap \operatorname{Span}\left(v_{1}, \ldots, v_{k+1}\right)$. Such a x exists: since

$$
\operatorname{dim} \operatorname{Ker} B+\operatorname{dim} \operatorname{Span}\left(v_{1}, \ldots, v_{k+1}\right) \geqslant n-k+k+1=n+1>n
$$

this implies that $\operatorname{Ker} B \cap \operatorname{Span}\left(v_{1}, \ldots, v_{k+1}\right) \neq\{0\}$. Thus

$$
\|A x-B x\|^{2}=\|A x\|^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}\left\langle v_{i}, x\right\rangle^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2}\left\langle v_{i}, x\right\rangle^{2} \geqslant \sigma_{k+1}^{2}\|x\|^{2}
$$

and therefore $\|A-B\| \geqslant\left\|A-A_{k}\right\|$ for all B of rank at most k.

Exercise 3. We define the circular convolution of $a \in \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$ as the vector $(a * x) \in \mathbb{R}^{n}$ whose entries are given by

$$
\forall k \in\{1, \ldots, n\}, \quad(a * x)_{k}:=\sum_{i=1}^{n} a_{[k-i]} x_{i}
$$

where $[i]=i(\bmod n)$. For $a \in \mathbb{R}^{n}$, let $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}, x \mapsto a * x$.

1. Write the matrix of A.
2. Let $F \in \mathbb{C}^{n \times n}$ be the DFT matrix, given by

$$
F_{k l}=\exp \left(-\frac{2 \imath \pi k l}{n}\right), \quad \forall 0 \leqslant k, l \leqslant n-1
$$

. Show that

$$
A F=F \operatorname{Diag}(\hat{a}),
$$

where $\hat{a}:=F a$ is the discrete Fourier transform of a. Deduce the singular values σ_{j} of A.
3. Let $a=\left[\begin{array}{lllll}1 & -1 & 0 & \ldots & 0\end{array}\right]^{\top}$. Compute the condition number of A in that case.

Solution.

1. We have

$$
A=\left[\begin{array}{cccc}
a_{0} & a_{n} & \ldots & a_{1} \\
a_{1} & a_{1} & \ldots & a_{2} \\
\vdots & \vdots & & \vdots \\
a_{n-1} & a_{n-2} & \ldots & a_{0}
\end{array}\right]
$$

2. We have

$$
\begin{aligned}
\left(A f_{j}\right)_{i} & =\sum_{k=0}^{n-1} a_{[i-k]} \exp \left(-\frac{2 \imath \pi k j}{n}\right) \\
& =\sum_{k=0}^{n-1} a_{k} \exp \left(-\frac{2 \imath \pi(i-k) j}{n}\right) \\
& =\exp \left(-\frac{2 \imath \pi i j}{n}\right) \sum_{k=0}^{n-1} a_{k} \exp \left(\frac{2 \imath \pi k j}{n}\right) \\
& =\exp \left(-\frac{2 \imath \pi i j}{n}\right) \hat{a}_{j}
\end{aligned}
$$

hence $A f_{j}=\hat{a}_{j} f_{j}$, and $A F=F \operatorname{Diag}(\hat{a})$.
3. The matrix $\frac{1}{\sqrt{n}} F$ is orthogonal (exercise), and we have

$$
A=\frac{1}{\sqrt{n}} F \operatorname{Diag}(n F a) \frac{1}{\sqrt{n}} F^{*}
$$

This does not give us the SVD of A since the coefficients $n F a$ are not real, but the singular values are immediately deduced from the eigenvalues of $A^{\top} A$, i.e. $\sigma_{j}=n\left|\hat{a}_{j}\right|$.
4. With this particular example we have

$$
\hat{a}_{k}=1-\exp \left(-2 \imath \pi \frac{k}{n}\right) .
$$

Hence $\left|\hat{a}_{k}\right|$ is smallest and non-zero for $k=1 / n$ (angle 0), and largest when $k / n \simeq 1 / 2$ (angle $p i$), more precisely when $k=\lfloor n / 2\rfloor$. Therefore we have

$$
\kappa(A)=\frac{\left|1-\exp \left(-\frac{2 \imath \pi\lfloor n / 2\rfloor}{n}\right)\right|}{\left|1-\exp \left(-\frac{2 \imath \pi}{n}\right)\right|}
$$

Note in particular that $\kappa(A) \rightarrow \infty$ if $n \rightarrow \infty$.

Exercise 4 (Pseudo-inverse). Let $A \in \mathbb{R}^{m \times n}$ and A^{\dagger} its Moore-Penrose pseudo-inverse.

1. Check the identities

$$
\begin{aligned}
& A^{\dagger} A A^{\dagger}=A^{\dagger} \\
& A A^{\dagger} A=A
\end{aligned}
$$

2. Show that $A^{\dagger} A$ and $A A^{\dagger}$ are orthogonal projections on $(\operatorname{Ker} A)^{\perp}$ and Ran A respectively.

Solution.

1. These relations are easily obtained using the singular value decomposition of A.
2.
