Exercise 1

Exercise 1 (Linear algebra reminders). Let $(E, \langle \cdot, \cdot \rangle_E)$ and $(F, \langle \cdot, \cdot \rangle_F)$ be *finite-dimensional* Hilbert spaces, and let $A \in \mathcal{L}(E, F)$.

1. Let G be a subspace of E. Show that $E = G \oplus G^{\perp}$.

Hint: one may introduce a basis of G and use the projection operator on G.

- 2. Show that
 - Ker $A^* = (\operatorname{Ran} A)^{\perp}$
 - Ran $A^* = (\operatorname{Ker} A)^{\perp}$
 - $\operatorname{Ker} A^*A = \operatorname{Ker} A$

3. Show that if A has full column rank (hence dim $E \leq \dim F$), then A^*A is invertible.

Exercise 2 (Regression). Given $\tau = \{t_1, \ldots, t_m\} \subset \mathbb{R}$, we define

$$\mathcal{A}_{n}^{\tau} : \mathbb{R}_{n-1}[X] \to \mathbb{R}^{m}$$
$$p \mapsto \left[p(t_{1}), \dots, p(t_{m}) \right]^{\top}$$

and we consider the inverse problem

$$\mathcal{A}_n^\tau(p) = y \tag{1}$$

given some $y \in \mathbb{R}^m$.

- 1. Show that \mathcal{A}_n^{τ} is linear and give its matrix representation \mathcal{A}_n^{τ} with respect to the canonical bases of $\mathbb{R}_{n-1}[X]$ and \mathbb{R}^m .
- 2. * Suppose n = m. Show that $det(A_m^{\tau}) = \prod_{i < j} (t_j t_i)$. When does (1) admit a unique solution in that case?
- 3. Suppose n < m. Why is the problem ill-posed in that case? We consider the least-square formulation

$$\min_{p \in \mathbb{R}^n} L(p) := \|A_n^{\tau} p - y\|_2^2.$$
(2)

Show that L is convex, and deduce the normal equations.

4. In this question, we assume that n = 2 and m > n. Show that the solution of (2) is a line that passes through the arithmetic mean of the points $((t_1, y_1), \ldots, (t_m, y_m))$.

Hint: With $p = (\alpha, \beta) \in \mathbb{R}^2$, consider the partial derivative of $L(\alpha, \beta)$ with respect to α .

Exercise 3. Let
$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ with $y_1 \leq y_2 \leq y_3$. We consider the linear system $Ax = y$ for $x \in \mathbb{R}$.

- 1. Is this system well-posed? why?
- 2. Let $p \in [1, +\infty]$. We replace the system by the following problem

$$\min_{x \in \mathbb{R}} \|Ax - y\|_p^p \tag{3}$$

Compute the solution of (3) for $p = 1, 2, \infty$.

Exercise 4 (An example in infinite dimension). Let $E = L^2([0, 1])$, endowed with the L²-norm, and let \mathcal{A} be the operator defined by

$$\mathcal{A}f(x) = \int_0^x f(t) \mathrm{d}t$$

- 1. Check that $A \in \mathcal{L}(E, E)$, and that it is continuous.
- 2. Show that A is injective.
- 3. Let $F := \{g \in C^1([0,1]) ; g(0) = 0\}$. Show that $F \subset \operatorname{Ran} A$. This allows to consider the restriction $\mathcal{A}^{-1}|_F : F \to E$ of $\mathcal{A}^{-1} : \operatorname{Ran} A \to E$.
- 4. Show that $\mathcal{A}^{-1}|_F$ is not continuous. Hint: consider the function $f_n(x) = f(x) + \frac{1}{n}\sin(n^2x)$ for $f \in C^1([0,1])$ with f(0) = 0.