Exercise 1

Exercise 1 (Linear algebra reminders). Let $\left(E,\langle\cdot, \cdot\rangle_{E}\right)$ and $\left(F,\langle\cdot, \cdot\rangle_{F}\right)$ be finite-dimensional Hilbert spaces, and let $A \in \mathcal{L}(E, F)$.

1. Let G be a subspace of E. Show that $E=G \oplus G^{\perp}$.

Hint: one may introduce a basis of G and use the projection operator on G.
2. Show that

- Ker $A^{*}=(\operatorname{Ran} A)^{\perp}$
- $\operatorname{Ran} A^{*}=(\operatorname{Ker} A)^{\perp}$
- $\operatorname{Ker} A^{*} A=\operatorname{Ker} A$

3. Show that if A has full column rank (hence $\operatorname{dim} E \leqslant \operatorname{dim} F$), then $A^{*} A$ is invertible.

Solution.

1. Let $x \in G \cap G^{\perp}$. Then $0=\langle x, x\rangle_{E}=\|x\|_{E}^{2}$, hence $x=0$. Therefore, $G \cap G^{\perp}=\{0\}$.

Let $x \in E$. Let $\left(e_{1}, \ldots, e_{k}\right)$ be an orthonormal basis of G, and consider the projection on G :

$$
\forall x \in E, \quad P_{G}(x)=\sum_{i=1}^{k}\left\langle x, e_{i}\right\rangle e_{i}
$$

Then $x=P_{G}(x)+\left(x-P_{G}(x)\right)$, and one checks easily that $\left(x-P_{G}(x)\right)$ is in G^{\perp}. Hence $x \in G+G^{\perp}$. This shows $E=G+G^{\perp}$.
2. We only prove the second equality. The inclusion $\operatorname{Ran} A^{*} \subset(\operatorname{Ker} A)^{\perp}$ is straightforward. Let $\operatorname{dim} E=n, \operatorname{dim} F=m$. Then, since
$\operatorname{dim} \operatorname{Ran} A^{*}=m-\operatorname{dim} \operatorname{Ker} A^{*}=m-\operatorname{dim}(\operatorname{Ran} A)^{\perp}=\operatorname{dim} \operatorname{Ran} A=n-\operatorname{dim} \operatorname{Ker} A=\operatorname{dim}(\operatorname{Ker} A)^{\perp}$ which proves the equality.
3. A full column rank means that $\operatorname{Ker} A=\{0\}$, and hence $\operatorname{Ker} A^{*} A=\{0\}$. Hence $\operatorname{dim} \operatorname{Ran} A^{*} A=$ n and $\operatorname{Ran} A^{*} A=F$.

Exercise 2 (Regression). Given $\tau=\left\{t_{1}, \ldots, t_{m}\right\} \subset \mathbb{R}$, we define

$$
\begin{aligned}
\mathcal{A}_{n}^{\tau}: \mathbb{R}_{n-1}[X] & \rightarrow \mathbb{R}^{m} \\
p & \mapsto\left[p\left(t_{1}\right), \ldots, p\left(t_{m}\right)\right]^{\top},
\end{aligned}
$$

and we consider the inverse problem

$$
\begin{equation*}
\mathcal{A}_{n}^{\tau}(p)=y \tag{1}
\end{equation*}
$$

given some $y \in \mathbb{R}^{m}$.

1. Show that \mathcal{A}_{n}^{τ} is linear and give its matrix representation A_{n}^{τ} with respect to the canonical bases of $\mathbb{R}_{n-1}[X]$ and \mathbb{R}^{m}.
2 . \star Suppose $n=m$. Show that $\operatorname{det}\left(A_{m}^{\tau}\right)=\prod_{i<j}\left(t_{j}-t_{i}\right)$. When does (1) admit a unique solution in that case?
2. Suppose $n<m$. Why is the problem ill-posed in that case? We consider the least-square formulation

$$
\begin{equation*}
\min _{p \in \mathbb{R}^{n}} L(p):=\left\|A_{n}^{\tau} p-y\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

Show that L is convex, and deduce the normal equations.
4. In this question, we assume that $n=2$ and $m>n$. Show that the solution of (2) is a line that passes through the arithmetic mean of the points $\left(\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)\right)$.
Hint: With $p=(\alpha, \beta) \in \mathbb{R}^{2}$, consider the partial derivative of $L(\alpha, \beta)$ with respect to α.

Solution.

1. One checks easily that $\mathcal{A}_{n}^{\tau}(\lambda p+\mu q)=\lambda \mathcal{A}_{n}^{\tau}(p)+\mu \mathcal{A}_{n}^{\tau}(q)$ for all $\lambda, \mu \in \mathbb{R}, p, q \in \mathbb{R}_{n-1}[X]$. The representing matrix is

$$
A_{n}^{\tau}=\left(\begin{array}{cccc}
1 & t_{1} & \ldots & t_{1}^{n-1} \\
1 & t_{2} & \ldots & t_{2}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & t_{m} & \ldots & t_{m}^{n-1}
\end{array}\right)
$$

2. We reason inductively. The formula is easily verifiable for $m=2$. Let us assume that it holds for a given m. We consider the determinant

$$
D_{m}(X)=\left|\begin{array}{cccc}
1 & X & \ldots & X^{m} \\
1 & t_{1} & \ldots & t_{1}^{m} \\
\vdots & \vdots & & \vdots \\
1 & t_{m} & \ldots & t_{m}^{m}
\end{array}\right|
$$

This is a polynomial of degree m, and one has $D\left(t_{i}\right)=0$ for all $i=1, \ldots, m$, hence necessarily

$$
D_{m}(X)=a_{m} \prod_{i=1}^{m}\left(X-t_{i}\right)
$$

The leading coefficient a_{m} is obtained by developing the determinant with respect to X^{m}, which gives $a_{m}=\operatorname{det}\left(A_{m}^{\tau}\right)$. By the induction hypothesis, we deduce

$$
D_{m}(X)=\prod_{1 \leqslant i<j \leqslant m}\left(t_{j}-t_{i}\right) \prod_{i=1}^{m}\left(X-t_{i}\right)
$$

and therefore

$$
\operatorname{det}\left(A_{m+1}^{\tau}\right)=D_{m}\left(t_{m+1}\right)=\prod_{1 \leqslant i<j \leqslant m+1}\left(t_{j}-t_{i}\right)
$$

which concludes the induction. The linear system admits a unique solution if and only if A_{m}^{τ} is injective, hence invertible in the case $m=n$, which happens when $t_{i} \neq t_{j}$ for all $i \neq j$ (since then the determinant is nonzero).
3. If $n<m$, then rank $A_{m}^{\tau}<m$ and A_{m}^{τ} cannot be surjective, so the linear system might have no solution.
The convexity of L is a simple verification. We can differentiate L with respect to p to obtain

$$
\nabla L(p)=2\left(A_{n}^{\tau}\right)^{\top}\left(A_{n}^{\tau} p-y\right)
$$

The first order optimality conition $\nabla L(p)=0$ leads to the normal equations.
4. In this situation the problem boils down to finding a line $y(t)=p_{0}+p_{1} t$ (a polynomial of degree 1) going through the point $\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)$. The least-squares problem associated with the linear system

$$
\left[\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

leads to the normal equations

$$
\left[\begin{array}{cc}
m & \sum t_{i} \\
\sum t_{i} & \sum t_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum y_{i} \\
\sum y_{i} t_{i}
\end{array}\right]
$$

which solves in

$$
p_{2}=\frac{\sum y_{i} t_{i}-m \bar{y} \bar{t}}{\sum t_{i}^{2}-m \bar{t}^{2}}, \quad p_{1}=\bar{y}-\beta \bar{t}
$$

where $\bar{y}=m^{-1} \sum y_{i}$ and $\bar{t}=m^{-1} \sum t_{i}$. In particular, we do have $\bar{y}=p_{1}+p_{2} \bar{t}$.

Exercise 3. Let $A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ with $y_{1} \leqslant y_{2} \leqslant y_{3}$. We consider the linear system $A x=y$ for $x \in \mathbb{R}$.

1. Is this system well-posed? why?
2. Let $p \in[1,+\infty]$. We replace the system by the following problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}}\|A x-y\|_{p}^{p} \tag{3}
\end{equation*}
$$

Compute the solution of (3) for $p=1,2, \infty$.

Solution.

1. The system is ill-posed, because A is not surjective, since $\operatorname{Ran} A=\left\{\left[\begin{array}{l}x \\ x \\ x\end{array}\right] ; x \in \mathbb{R}\right\} \neq \mathbb{R}^{3}$.
2. For $p=2$, we retrieve the usual least-squares problem, whose solution is given by the normal equations

$$
3 x=\sum y_{i}, \quad \text { i.e. } x=\frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right) .
$$

For $p=1$, we want to minimize $\sum\left|x-y_{i}\right|$ over $x \in \mathbb{R}$. For any $x \in \mathbb{R}$, we have that $\sum\left|x-y_{i}\right| \geqslant\left|x-y_{1}\right|+\left|x-y_{3}\right| \geqslant\left|y_{1}-y_{3}\right|$, with equality if $x=y_{2}$ (since $y_{1} \leqslant y_{2} \leqslant y_{3}$). Hence the minimum is attained for $x=y_{2}$.
For $p=\infty$, we want to minimize $\max _{i}\left|x-y_{i}\right|$ for $x \in \mathbb{R}$. Because of the ordering $y_{1} \leqslant y_{2} \leqslant y_{3}$, we can see that the maximum over y_{1}, y_{2}, y_{3} is actually equal to the maximum over y_{1} and y_{3} only. The point that minimizes the largest distance to one of these two points is their mean: the solution is $x=\frac{1}{2}\left(y_{1}+y_{3}\right)$.

Exercise 4 (An example in infinite dimension). Let $E=\mathrm{L}^{2}([0,1])$, endowed with the L^{2}-norm, and let \mathcal{A} be the operator defined by

$$
\mathcal{A} f(x)=\int_{0}^{x} f(t) \mathrm{d} t
$$

1. Check that $A \in \mathcal{L}(E, E)$, and that it is continuous.
2. Show that A is injective.
3. Let $F:=\left\{g \in C^{1}([0,1]) ; g(0)=0\right\}$. Show that $F \subset \operatorname{Ran} A$. This allows to consider the restriction $\left.\mathcal{A}^{-1}\right|_{F}: F \rightarrow E$ of $\mathcal{A}^{-1}: \operatorname{Ran} A \rightarrow E$.
4. Show that $\left.\mathcal{A}^{-1}\right|_{F}$ is not continuous.

Hint: consider the function $f_{n}(x)=f(x)+\frac{1}{n} \sin \left(n^{2} x\right)$ for $f \in C^{1}([0,1])$ with $f(0)=0$.

Solution.

1. Linearity is easy to check. One has that $\|\mathcal{A} f\|_{2}^{2} \leqslant\|f\|_{2}^{2}$, hence $\mathcal{A} f \in \mathrm{~L}^{2}$. For continuity, note that for any ε, if $\|f-g\|_{2} \leqslant \varepsilon$ then

$$
\begin{aligned}
\|\mathcal{A} f-\mathcal{A} g\|_{2}^{2} & =\int_{0}^{1}\left|\int_{0}^{x}(f-g)(t) \mathrm{d} t\right|^{2} \mathrm{~d} x \\
& \leqslant \int_{0}^{1} \int_{0}^{x}|f-g|^{2}(t) \mathrm{d} t \mathrm{~d} x \\
& \leqslant\|f-g\|_{2}^{2} \leqslant \varepsilon^{2}
\end{aligned}
$$

2. Let $f \in \operatorname{Ker} \mathcal{A}$. Then, for any x,

$$
\int_{0}^{x} f(t) \mathrm{d} t=0
$$

hence, by derivating,

$$
\forall x \in[0,1], \quad f(x)=0
$$

3. If $g \in F$, then it has a derivative g^{\prime} and we have that

$$
\mathcal{A} g^{\prime}(x)=\int_{0}^{x} g^{\prime}(t) \mathrm{d} t=g(x)-g(0)=g(x)
$$

hence $g \in \operatorname{Ran} A$.
4. $\left.\mathcal{A}^{-1}\right|_{F}$ is simply the standard derivation of a function. We have that

$$
\left\|f_{n}-f\right\|_{2}^{2}=\frac{1}{n^{2}} \int \sin ^{2}\left(n^{2} x\right) \mathrm{d} x \leqslant \frac{1}{n^{2}}
$$

but on the other hand

$$
\left\|\mathcal{A}^{-1} f_{n}-\mathcal{A}^{-1} f\right\|_{2}^{2}=\left\|f_{n}^{\prime}-f^{\prime}\right\|_{2}^{2}=n \int_{0}^{1} \cos ^{2}\left(n^{2} x\right) \mathrm{d} x=\frac{n}{2} \int\left(1+\cos \left(2 n^{2} x\right)\right) \mathrm{d} x=\frac{n}{2}+\frac{\sin \left(2 n^{2}\right)}{4 n} .
$$

Therefore, $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$, but $\lim _{n \rightarrow \infty}\left\|f_{n}^{\prime}-f^{\prime}\right\|=+\infty$, which shows that \mathcal{A}^{-1} is not continuous.

