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Exercise 1
Exercise 1 (Linear algebra reminders). Let (E, 〈·, ·〉E) and (F, 〈·, ·〉F ) be finite-dimensional Hilbert
spaces, and let A ∈ L(E,F ).

1. Let G be a subspace of E. Show that E = G⊕G⊥.
Hint: one may introduce a basis of G and use the projection operator on G.

2. Show that

• KerA∗ = (RanA)⊥

• RanA∗ = (KerA)⊥

• KerA∗A = KerA

3. Show that if A has full column rank (hence dimE 6 dimF ), then A∗A is invertible.

Solution.

1. Let x ∈ G ∩G⊥. Then 0 = 〈x, x〉E = ||x||2E , hence x = 0. Therefore, G ∩G⊥ = {0}.
Let x ∈ E. Let (e1, . . . , ek) be an orthonormal basis of G, and consider the projection on G:

∀x ∈ E, PG(x) =

k∑
i=1

〈x, ei〉ei

Then x = PG(x) + (x − PG(x)), and one checks easily that (x − PG(x)) is in G⊥. Hence
x ∈ G+G⊥. This shows E = G+G⊥.

2. We only prove the second equality. The inclusion RanA∗ ⊂ (KerA)⊥ is straightforward. Let
dimE = n, dimF = m. Then, since

dimRanA∗ = m−dimKerA∗ = m−dim(RanA)⊥ = dimRanA = n−dimKerA = dim(KerA)⊥

which proves the equality.

3. A full column rank means that KerA = {0}, and hence KerA∗A = {0}. Hence dimRanA∗A =
n and RanA∗A = F .

�

Exercise 2 (Regression). Given τ = {t1, . . . , tm} ⊂ R, we define

Aτ
n : Rn−1[X] → Rm

p 7→
[
p(t1), . . . , p(tm)

]>,
and we consider the inverse problem

Aτ
n(p) = y (1)

given some y ∈ Rm.
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1. Show that Aτ
n is linear and give its matrix representation Aτ

n with respect to the canonical
bases of Rn−1[X] and Rm.

2. ? Suppose n = m. Show that det(Aτ
m) =

∏
i<j(tj − ti). When does (1) admit a unique

solution in that case?

3. Suppose n < m. Why is the problem ill-posed in that case? We consider the least-square
formulation

min
p∈Rn

L(p) := ||Aτ
np− y||22. (2)

Show that L is convex, and deduce the normal equations.

4. In this question, we assume that n = 2 and m > n. Show that the solution of (2) is a line
that passes through the arithmetic mean of the points ((t1, y1), . . . , (tm, ym)).
Hint: With p = (α, β) ∈ R2, consider the partial derivative of L(α, β) with respect to α.

Solution.

1. One checks easily that Aτ
n(λp+µq) = λAτ

n(p)+µAτ
n(q) for all λ, µ ∈ R, p, q ∈ Rn−1[X]. The

representing matrix is

Aτ
n =


1 t1 . . . tn−1

1

1 t2 . . . tn−1
2

...
...

...
1 tm . . . tn−1

m


2. We reason inductively. The formula is easily verifiable for m = 2. Let us assume that it holds

for a given m. We consider the determinant

Dm(X) =

1 X . . . Xm

1 t1 . . . tm1
...

...
...

1 tm . . . tmm

This is a polynomial of degree m, and one has D(ti) = 0 for all i = 1, . . . ,m, hence necessarily

Dm(X) = am

m∏
i=1

(X − ti).

The leading coefficient am is obtained by developing the determinant with respect to Xm,
which gives am = det(Aτ

m). By the induction hypothesis, we deduce

Dm(X) =
∏

16i<j6m

(tj − ti)

m∏
i=1

(X − ti)

and therefore
det(Aτ

m+1) = Dm(tm+1) =
∏

16i<j6m+1

(tj − ti),

which concludes the induction. The linear system admits a unique solution if and only if Aτ
m

is injective, hence invertible in the case m = n, which happens when ti 6= tj for all i 6= j
(since then the determinant is nonzero).
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3. If n < m, then rankAτ
m < m and Aτ

m cannot be surjective, so the linear system might have
no solution.
The convexity of L is a simple verification. We can differentiate L with respect to p to obtain

∇L(p) = 2(Aτ
n)

>(Aτ
np− y).

The first order optimality conition ∇L(p) = 0 leads to the normal equations.

4. In this situation the problem boils down to finding a line y(t) = p0 + p1t (a polynomial of
degree 1) going through the point (t1, y1), . . . , (tm, ym). The least-squares problem associated
with the linear system 1 t1

...
...

1 tm

[
p1
p2

]
=

 y1
...
ym


leads to the normal equations [

m
∑

ti∑
ti

∑
t2i

] [
p1
p2

]
=

[ ∑
yi∑
yiti

]
which solves in

p2 =

∑
yiti −myt∑
t2i −mt

2 , p1 = y − βt,

where y = m−1
∑

yi and t = m−1
∑

ti. In particular, we do have y = p1 + p2t.

�

Exercise 3. Let A =

11
1

 and y =

y1y2
y3

 with y1 6 y2 6 y3. We consider the linear system Ax = y

for x ∈ R.

1. Is this system well-posed? why?

2. Let p ∈ [1,+∞]. We replace the system by the following problem

min
x∈R

||Ax− y||pp (3)

Compute the solution of (3) for p = 1, 2,∞.

Solution.

1. The system is ill-posed, because A is not surjective, since RanA =


xx
x

 ; x ∈ R

 6= R3.

2. For p = 2, we retrieve the usual least-squares problem, whose solution is given by the normal
equations

3x =
∑

yi, i.e. x =
1

3
(y1 + y2 + y3).
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For p = 1, we want to minimize
∑

|x − yi| over x ∈ R. For any x ∈ R, we have that∑
|x− yi| > |x− y1|+ |x− y3| > |y1− y3|, with equality if x = y2 (since y1 6 y2 6 y3). Hence

the minimum is attained for x = y2.
For p = ∞, we want to minimize maxi |x−yi| for x ∈ R. Because of the ordering y1 6 y2 6 y3,
we can see that the maximum over y1, y2, y3 is actually equal to the maximum over y1 and y3
only. The point that minimizes the largest distance to one of these two points is their mean:
the solution is x = 1

2 (y1 + y3).

�

Exercise 4 (An example in infinite dimension). Let E = L2([0, 1]), endowed with the L2-norm, and
let A be the operator defined by

Af(x) =

∫ x

0

f(t)dt

1. Check that A ∈ L(E,E), and that it is continuous.

2. Show that A is injective.

3. Let F :=
{
g ∈ C1([0, 1]) ; g(0) = 0

}
. Show that F ⊂ RanA. This allows to consider the

restriction A−1|F : F → E of A−1 : RanA → E.

4. Show that A−1|F is not continuous.
Hint: consider the function fn(x) = f(x) + 1

n sin(n2x) for f ∈ C1([0, 1]) with f(0) = 0.

Solution.

1. Linearity is easy to check. One has that ||Af ||22 6 ||f ||22, hence Af ∈ L2. For continuity, note
that for any ε, if ||f − g||2 6 ε then

||Af −Ag||22 =

∫ 1

0

∣∣∣∣∫ x

0

(f − g)(t)dt

∣∣∣∣2 dx
6

∫ 1

0

∫ x

0

|f − g|2(t)dtdx

6 ||f − g||22 6 ε2

2. Let f ∈ KerA. Then, for any x, ∫ x

0

f(t)dt = 0,

hence, by derivating,
∀x ∈ [0, 1], f(x) = 0.

3. If g ∈ F , then it has a derivative g′ and we have that

Ag′(x) =

∫ x

0

g′(t)dt = g(x)− g(0) = g(x)

hence g ∈ RanA.
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4. A−1|F is simply the standard derivation of a function. We have that

||fn − f ||22 =
1

n2

∫
sin2(n2x)dx 6

1

n2

but on the other hand

||A−1fn−A−1f ||22 = ||f ′
n−f ′||22 = n

∫ 1

0

cos2(n2x)dx =
n

2

∫
(1+cos(2n2x))dx =

n

2
+

sin(2n2)

4n
.

Therefore, limn→∞ ||fn − f || = 0, but limn→∞ ||f ′
n − f ′|| = +∞, which shows that A−1 is not

continuous.

�
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