Exercise 1

Exercise 1 (Linear algebra reminders). Let $(E, \langle \cdot, \cdot \rangle_E)$ and $(F, \langle \cdot, \cdot \rangle_F)$ be *finite-dimensional* Hilbert spaces, and let $A \in \mathcal{L}(E, F)$.

1. Let G be a subspace of E. Show that $E = G \oplus G^{\perp}$.

Hint: one may introduce a basis of G and use the projection operator on G.

- 2. Show that
 - Ker $A^* = (\operatorname{Ran} A)^{\perp}$
 - Ran $A^* = (\operatorname{Ker} A)^{\perp}$
 - $\operatorname{Ker} A^*A = \operatorname{Ker} A$
- 3. Show that if A has full column rank (hence dim $E \leq \dim F$), then A^*A is invertible.

Solution.

1. Let $x \in G \cap G^{\perp}$. Then $0 = \langle x, x \rangle_E = ||x||_E^2$, hence x = 0. Therefore, $\underline{G \cap G^{\perp}} = \{0\}$. Let $x \in E$. Let (e_1, \ldots, e_k) be an orthonormal basis of G, and consider the projection on G:

$$\forall x \in E, \quad P_G(x) = \sum_{i=1}^k \langle x, e_i \rangle e_i$$

Then $x = P_G(x) + (x - P_G(x))$, and one checks easily that $(x - P_G(x))$ is in G^{\perp} . Hence $x \in G + G^{\perp}$. This shows $\underline{E} = G + G^{\perp}$.

2. We only prove the second equality. The inclusion $\operatorname{Ran} A^* \subset (\operatorname{Ker} A)^{\perp}$ is straightforward. Let $\dim E = n$, $\dim F = m$. Then, since

 $\dim \operatorname{Ran} A^* = m - \dim \operatorname{Ker} A^* = m - \dim (\operatorname{Ran} A)^{\perp} = \dim \operatorname{Ran} A = n - \dim \operatorname{Ker} A = \dim (\operatorname{Ker} A)^{\perp}$ which proves the equality.

3. A full column rank means that Ker $A = \{0\}$, and hence Ker $A^*A = \{0\}$. Hence dim Ran $A^*A = n$ and Ran $A^*A = F$.

Exercise 2 (Regression). Given $\tau = \{t_1, \ldots, t_m\} \subset \mathbb{R}$, we define

$$\mathcal{A}_{n}^{\tau}: \mathbb{R}_{n-1}[X] \to \mathbb{R}^{m}$$
$$p \mapsto \left[p(t_{1}), \dots, p(t_{m}) \right]^{\top},$$

and we consider the inverse problem

$$\mathcal{A}_n^\tau(p) = y \tag{1}$$

given some $y \in \mathbb{R}^m$.

- 1. Show that \mathcal{A}_n^{τ} is linear and give its matrix representation \mathcal{A}_n^{τ} with respect to the canonical bases of $\mathbb{R}_{n-1}[X]$ and \mathbb{R}^m .
- 2. * Suppose n = m. Show that $det(A_m^{\tau}) = \prod_{i < j} (t_j t_i)$. When does (1) admit a unique solution in that case?
- 3. Suppose n < m. Why is the problem ill-posed in that case? We consider the least-square formulation

$$\min_{p \in \mathbb{R}^n} L(p) := \|A_n^{\tau} p - y\|_2^2.$$
(2)

Show that L is convex, and deduce the normal equations.

4. In this question, we assume that n = 2 and m > n. Show that the solution of (2) is a line that passes through the arithmetic mean of the points $((t_1, y_1), \ldots, (t_m, y_m))$.

Hint: With $p = (\alpha, \beta) \in \mathbb{R}^2$, consider the partial derivative of $L(\alpha, \beta)$ with respect to α .

Solution.

1. One checks easily that $\mathcal{A}_n^{\tau}(\lambda p + \mu q) = \lambda \mathcal{A}_n^{\tau}(p) + \mu \mathcal{A}_n^{\tau}(q)$ for all $\lambda, \mu \in \mathbb{R}, p, q \in \mathbb{R}_{n-1}[X]$. The representing matrix is

$$A_n^{\tau} = \begin{pmatrix} 1 & t_1 & \dots & t_1^{n-1} \\ 1 & t_2 & \dots & t_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \dots & t_m^{n-1} \end{pmatrix}$$

2. We reason inductively. The formula is easily verifiable for m = 2. Let us assume that it holds for a given m. We consider the determinant

$$D_m(X) = \begin{vmatrix} 1 & X & \dots & X^m \\ 1 & t_1 & \dots & t_1^m \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \dots & t_m^m \end{vmatrix}$$

This is a polynomial of degree m, and one has $D(t_i) = 0$ for all $i = 1, \ldots, m$, hence necessarily

$$D_m(X) = a_m \prod_{i=1}^m (X - t_i)$$

The leading coefficient a_m is obtained by developing the determinant with respect to X^m , which gives $a_m = \det(A_m^{\tau})$. By the induction hypothesis, we deduce

$$D_m(X) = \prod_{1 \le i < j \le m} (t_j - t_i) \prod_{i=1}^m (X - t_i)$$

and therefore

$$\det(A_{m+1}^{\tau}) = D_m(t_{m+1}) = \prod_{1 \le i < j \le m+1} (t_j - t_i),$$

which concludes the induction. The linear system admits a unique solution if and only if A_m^{τ} is injective, hence invertible in the case m = n, which happens when $t_i \neq t_j$ for all $i \neq j$ (since then the determinant is nonzero).

3. If n < m, then rank $A_m^{\tau} < m$ and A_m^{τ} cannot be surjective, so the linear system might have no solution.

The convexity of L is a simple verification. We can differentiate L with respect to p to obtain

$$\nabla L(p) = 2(A_n^{\tau})^{\top} (A_n^{\tau} p - y).$$

The first order optimality conition $\nabla L(p) = 0$ leads to the normal equations.

4. In this situation the problem boils down to finding a line $y(t) = p_0 + p_1 t$ (a polynomial of degree 1) going through the point $(t_1, y_1), \ldots, (t_m, y_m)$. The least-squares problem associated with the linear system

$$\begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

leads to the normal equations

$$\begin{bmatrix} m & \sum t_i \\ \sum t_i & \sum t_i^2 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i t_i \end{bmatrix}$$

which solves in

$$p_2 = \frac{\sum y_i t_i - m\overline{y}\overline{t}}{\sum t_i^2 - m\overline{t}^2}, \quad p_1 = \overline{y} - \beta\overline{t},$$

where $\overline{y} = m^{-1} \sum y_i$ and $\overline{t} = m^{-1} \sum t_i$. In particular, we do have $\overline{y} = p_1 + p_2 \overline{t}$.

Exercise 3. Let $A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ with $y_1 \leq y_2 \leq y_3$. We consider the linear system Ax = y for $x \in \mathbb{R}$.

or $x \in \mathbb{R}$.

- 1. Is this system well-posed? why?
- 2. Let $p \in [1, +\infty]$. We replace the system by the following problem

$$\min_{x \in \mathbb{R}} \|Ax - y\|_p^p \tag{3}$$

Compute the solution of (3) for $p = 1, 2, \infty$.

Solution.

- 1. The system is ill-posed, because A is not surjective, since $\operatorname{Ran} A = \left\{ \begin{bmatrix} x \\ x \\ x \end{bmatrix} ; x \in \mathbb{R} \right\} \neq \mathbb{R}^3.$
- 2. For p = 2, we retrieve the usual least-squares problem, whose solution is given by the normal equations

$$3x = \sum y_i$$
, *i.e.* $\frac{x = \frac{1}{3}(y_1 + y_2 + y_3)}{\frac{1}{3}(y_1 + y_2 + y_3)}$.

For p = 1, we want to minimize $\sum |x - y_i|$ over $x \in \mathbb{R}$. For any $x \in \mathbb{R}$, we have that $\sum |x - y_i| \ge |x - y_1| + |x - y_3| \ge |y_1 - y_3|$, with equality if $x = y_2$ (since $y_1 \le y_2 \le y_3$). Hence the minimum is attained for $x = y_2$.

For $p = \infty$, we want to minimize $\max_i |x - y_i|$ for $x \in \mathbb{R}$. Because of the ordering $y_1 \leq y_2 \leq y_3$, we can see that the maximum over y_1, y_2, y_3 is actually equal to the maximum over y_1 and y_3 only. The point that minimizes the largest distance to one of these two points is their mean: the solution is $x = \frac{1}{2}(y_1 + y_3)$.

Exercise 4 (An example in infinite dimension). Let $E = L^2([0, 1])$, endowed with the L²-norm, and let \mathcal{A} be the operator defined by

$$\mathcal{A}f(x) = \int_0^x f(t) \mathrm{d}t$$

- 1. Check that $A \in \mathcal{L}(E, E)$, and that it is continuous.
- 2. Show that A is injective.
- 3. Let $F := \{g \in C^1([0,1]) ; g(0) = 0\}$. Show that $F \subset \operatorname{Ran} A$. This allows to consider the restriction $\mathcal{A}^{-1}|_F : F \to E$ of $\mathcal{A}^{-1} : \operatorname{Ran} A \to E$.
- 4. Show that $\mathcal{A}^{-1}|_F$ is not continuous.

Hint: consider the function $f_n(x) = f(x) + \frac{1}{n}\sin(n^2x)$ for $f \in C^1([0,1])$ with f(0) = 0.

Solution.

1. Linearity is easy to check. One has that $\|Af\|_2^2 \leq \|f\|_2^2$, hence $Af \in L^2$. For continuity, note that for any ε , if $\|f - g\|_2 \leq \varepsilon$ then

$$\begin{aligned} \|\mathcal{A}f - \mathcal{A}g\|_2^2 &= \int_0^1 \left| \int_0^x (f - g)(t) \mathrm{d}t \right|^2 \mathrm{d}x \\ &\leqslant \int_0^1 \int_0^x |f - g|^2(t) \mathrm{d}t \mathrm{d}x \\ &\leqslant \|f - g\|_2^2 \leqslant \varepsilon^2 \end{aligned}$$

2. Let $f \in \operatorname{Ker} \mathcal{A}$. Then, for any x,

$$\int_0^x f(t) \mathrm{d}t = 0,$$

hence, by derivating,

$$\forall x \in [0,1], \quad f(x) = 0.$$

3. If $g \in F$, then it has a derivative g' and we have that

$$\mathcal{A}g'(x) = \int_0^x g'(t) dt = g(x) - g(0) = g(x)$$

hence $g \in \operatorname{Ran} A$.

4. $\mathcal{A}^{-1}|_F$ is simply the standard derivation of a function. We have that

$$||f_n - f||_2^2 = \frac{1}{n^2} \int \sin^2(n^2 x) dx \leq \frac{1}{n^2}$$

but on the other hand

$$\|\mathcal{A}^{-1}f_n - \mathcal{A}^{-1}f\|_2^2 = \|f_n' - f'\|_2^2 = n \int_0^1 \cos^2(n^2 x) \mathrm{d}x = \frac{n}{2} \int (1 + \cos(2n^2 x)) \mathrm{d}x = \frac{n}{2} + \frac{\sin(2n^2)}{4n}.$$

Therefore, $\lim_{n\to\infty} ||f_n - f|| = 0$, but $\lim_{n\to\infty} ||f'_n - f'|| = +\infty$, which shows that \mathcal{A}^{-1} is not continuous.