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Exercise 1

Ezercise 1 (Linear algebra reminders). Let (E, (-, -)g) and (F, (-, -)r) be finite-dimensional Hilbert
spaces, and let A € L(E, F).

1. Let G be a subspace of E. Show that E = G @ G*.

Hint: one may introduce a basis of G and use the projection operator on G.
2. Show that

o Ker A* = (Ran A)+
e RanA* = (Ker A)+
o Ker A*A=KerA

3. Show that if A has full column rank (hence dim E' < dim F'), then A*A is invertible.

Solution.
1. Let x € GNG*. Then 0 = (v, 2)g = |x|%, hence z = 0. Therefore, G N G+ = {0}.
Let x € E. Let (ey,...,er) be an orthonormal basis of G, and consider the projection on G:

k
Ve e E, Pg(x)= Z(a:, ei)e;

i=1

Then = Pg(x) + (z — Pg(x)), and one checks easily that (z — Pg(x)) is in G*. Hence
r € G+ G*. This shows E = G+ G+.

2. We only prove the second equality. The inclusion Ran A* C (Ker A)* is straightforward. Let
dim F = n, dim F' = m. Then, since

dim Ran A* = m—dim Ker A* = m—dim(Ran A)* = dim Ran A = n—dim Ker A = dim(Ker A)*
which proves the equality.

3. A full column rank means that Ker A = {0}, and hence Ker A*A = {0}. Hence dimRan A*A =
n and Ran A*A = F.

[ |
Ezercise 2 (Regression). Given 7 = {t1,...,tm} C R, we define
AT R, [X] = R™

and we consider the inverse problem
AL(p) =y 1)

given some y € R™.



1. Show that Aj is linear and give its matrix representation A7 with respect to the canonical
bases of R,,—1[X] and R™.

2. % Suppose n = m. Show that det(A7,) = [[,;(¢; —t;). When does (1) admit a unique
solution in that case?

3. Suppose n < m. Why is the problem ill-posed in that case? We consider the least-square
formulation

in L(p) := |Alp — y|3. 2
min (p) = [Anp — yl3 (2)

Show that L is convex, and deduce the normal equations.

4. In this question, we assume that n = 2 and m > n. Show that the solution of (2) is a line
that passes through the arithmetic mean of the points ((t1,y1),- .-, (tm, Ym))-
Hint: With p = (a, 3) € R?, consider the partial derivative of L(c, 3) with respect to a.

Solution.

1. One checks easily that A7 (Ap+ pnq) = ANA7 (p) + pAL(q) for all A\, p € R, p,q € R,_1[X]. The
representing matrix is

1t ... !

1 ty ... !
AT = , ?

1 ty, ... tn-t

2. We reason inductively. The formula is easily verifiable for m = 2. Let us assume that it holds
for a given m. We consider the determinant

1 X ... X™m
1t ... P
DM(X) =
1 tm ..
This is a polynomial of degree m, and one has D(t;) = 0 for all i = 1,...,m, hence necessarily
D (X) = am [[(X = ta).
i=1

The leading coefficient a,, is obtained by developing the determinant with respect to X™,
which gives a,, = det(A7,). By the induction hypothesis, we deduce

Dm(X)= ][] ¢&-t)][(X—1t)
1<i<j<m i=1
and therefore
det(A:n-&-l) = Dm(tm+l) = H (tj - ti)7
1<i<j<m+1

which concludes the induction. The linear system admits a unique solution if and only if A7,
is injective, hence invertible in the case m = n, which happens when t; # t; for all ¢ # j
(since then the determinant is nonzero).



3. If n < m, then rank A7 < m and A], cannot be surjective, so the linear system might have
no solution.

The convexity of L is a simple verification. We can differentiate L with respect to p to obtain
VL(p) = 2(A7) " (A7p — v).
The first order optimality conition VL(p) = 0 leads to the normal equations.

4. In this situation the problem boils down to finding a line y(t) = pg + p1t (a polynomial of
degree 1) going through the point (¢1,%1),. .., (tm, ym). The least-squares problem associated
with the linear system

1 % Y1
P _
St e :
L tm Ym
leads to the normal equations
mo Yot ] | 2
Yt Y] [pe > Yiti
which solves in > B
Yit; — myt _ _
p2:%7 plzy_ﬂt7
>tz —mt

where J = m™ Y y; and £ = m~! >_¢;. In particular, we do have § = p; + pat.

|
1 Y1

Ezxercise 3. Let A= |1| and y = |y2| with y1 < y2 < y3. We consider the linear system Az =y
1 Y3

for z € R.

1. Is this system well-posed? why?

2. Let p € [1,400]. We replace the system by the following problem

U
min [ Az — y} 3)

Compute the solution of (3) for p = 1,2, co.

Solution.
T

1. The system is ill-posed, because A is not surjective, since Ran A = x| ;x€Ry #R3.
x

2. For p = 2, we retrieve the usual least-squares problem, whose solution is given by the normal
equations

. 1
3z = Zyi, ie T = g(yl + Y2 + y3)-




For p = 1, we want to minimize ) |z — y;| over z € R. For any » € R, we have that
Sl —yi| = |z —yi|+ |z —ys| = ly1 — ys|, with equality if x = yo (since y1 < y2 < y3). Hence
the minimum is attained for z = ys,.

For p = 0o, we want to minimize max; |x—y;| for € R. Because of the ordering y; < y2 < y3,
we can see that the maximum over y1, ys, y3 is actually equal to the maximum over y; and ys
only. The point that minimizes the largest distance to one of these two points is their mean:
the solution is z = % (y1 + y3).

Ezercise 4 (An example in infinite dimension). Let E = L?([0,1]), endowed with the L?-norm, and
let A be the operator defined by

Aﬂm=[fﬂww

. Check that A € L(E, E), and that it is continuous.
. Show that A is injective.

. Let F := {g€C([0,1]) ; g(0) = 0}. Show that FF C RanA. This allows to consider the

restriction A7, : F — E of A™! : RanA — E.

. Show that A~!|, is not continuous.

Hint: consider the function f,(z) = f(z) + + sin(n®z) for f € C*([0,1]) with f(0) = 0.

Solution.

1. Linearity is easy to check. One has that |.Af[|3 < |f]3, hence Af € L. For continuity, note

that for any ¢, if |f — g|2 < € then

2

1 x
IMf—Aﬂ§:A A(f—@@ﬁtdx

< [ [ 1 opoa

<If-gl3 <€

2. Let f € Ker.A. Then, for any =z,

| s =o

Vz e [0,1], f(z)=0.

hence, by derivating,

3. If g € F, then it has a derivative ¢’ and we have that

hence g € Ran A.



4. A7  is simply the standard derivation of a function. We have that
I~ 13 = o5 [ sin’(n?)de <
n 2= 5 [ sinf(n7z)de <

but on the other hand

sin(2n?)

1
A = A = 1= £ = [ contapte = § [ (- cos(n®))de = 5 2

|3

Therefore, lim,, oo | fn — f| = 0, but lim,, | f, — f’| = +00, which shows that A~! is not
continuous.



